

Deutsche Gesellschaft für Luft- und Raumfahrt Lilienthal-Oberth e.V.

Verein Deutscher Ingenieure Hamburger Bezirksverein e.V. Arbeitskreis Luft- und Raumfahrt

Invitation to an RAeS lecture in cooperation with the DGLR and VDI

Aircraft Fire and Evacuation Simulation

Prof. Edwin Galea, Director, Fire Safety Engineering Group, University of Greenwich

Lecture followed by discussion Entry free ! No registration required !

Download: http://hamburg.dglr.de

Date: Thursday, 16th October 2014, 18:00 Location: HAW Hamburg Berliner Tor 5, (Neubau), Hörsaal 01.12

Exploring the Appropriateness of the Aviation Industry Evacuation Certification Requirements Using Fire and Evacuation Simulation

> Prof Ed Galea Fire Safety Engineering Group (FSEG) University of Greenwich

RAeS Hamburg Branch 16 Oct 2014

FSEG: Modelling Safety and Security

- FSEG was Founded in 1986 by Prof Galea in response to the Manchester Airport B737 fire.
- Today it consists of 30 researchers including:
 - fire engineers, CFD specialists, psychologists, mathematicians and software engineers.
- Research interests include the mathematical modelling and experimental analysis of:
 - evacuation dynamics in complex spaces,
 - pedestrian dynamics in complex spaces,
 - combustion and fire/smoke spread,
 - fire suppression,
 - homeland security
- Application areas include:
 - aerospace, built environment, marine and rail.

RAeS Hamburg Branch 16 Oct 2014

Applications of FSEG Software

A380 – Super Jumbo

Millennium Dome

Stadium Australia

Rail Stations

Royal Ascot

ittany Ferries

Large PAX Ships

Naval Ships

Pentagon Shield

Historic Buildings

Beijing Olympic Stadium

Rhode Island

WTC 9/11 analysis

RAeS Hamburg Branch 16 Oct 2014

□ Post-crash Fires

- One of the most serious threats to passengers in survivable aircraft accidents.
- Initial external fuel fire spreads into aircraft interior either via ruptures or burn-through.
- For conventional aircraft, time to Flashover is a critical factor for evacuation and survival.

Certification Trial

- **50%** of exits available, one from each exit pair.
- **90 seconds** maximum allowable time for evacuation

Varied Openings in Accidents

- In real incidents, various number of exits are likely to be available for evacuation.
- Fire and evacuation modelling can be used to investigate the impact of accident events on survivability and can also be used for certification analysis.

Thailand Phuket, 16/09/07

Toronto, Canada 02/08/05

Japan Okinawa, 20/08/07

e.r.galea@gre.ac.uk

FSEG Evacuation Data Collection

Aircraft evacuation exit behaviour – Type A

Aircraft pax stair behaviour

Aircraft evacuation pax behaviour in smoke

Upper deck Type A slide behaviour

BWB pax exit selection

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

airEXODUS Software

- Developed by FSEG and under constant development since 1989
- Agent based model with Rule Based Behaviour.
 - •Behaviour is adaptive
 - •Some rules stochastic.
- Behaviour model considers:
 - •People-people
 - •People-fire
 - •People-Structure
- airEXODUS unique features include:
 - ability to simulate impact of heat, smoke and toxic gases on evacuation capability of individuals
 - ability to include interaction of crew with paxs
 - extensive validation history

movement

airEXODUS — TOXICITY MODEL

- **Toxic, Irritant and Physical Hazards include:** elevated temperature, thermal radiation, HCN, CO, CO₂, low O₂, HCL, HF, etc.
- Physiological impact of narcotic gases / temp / radiative heat determined using **FED Toxicity Models**. Impact of irritant gases determined through **FIC Model**.
- **FED Models** effects of narcotic gases related to *dose* received rather than exposure *concentration*.
- FIC Models effects of irritant gases related to conc
- **Incapacitation** determined to occur when the ratio of dose received (heat or toxic gases) over time to dose required to cause incapacitation reaches unity
- As occupant moves through **Smoke**, travel speed is reduced according to experimental data of Jin, representing impact of reduced visibility.
 - Occupants will crawl when smoke conc. or temp at head height exceed critical values.

e.r.galea@gre.ac.uk

airEXODUS Applications

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

airEXODUS ations

airEXODUS Applications

- aircraft design, including innovative concepts such as BWB
- demonstrating compliance with 90-second certification requirements,
- crew training,
- development of crew procedures,
- resolution of operational issues and
- accident investigation.
- Aviation applications include:
 - Airbus e.g. A380, A340-600, BWB
 - Bombardier e.g. Dash 8-400, RJ, concept aircraft
 - Mitsubishi e.g. MRJ
 - BA e.g. Novel cabin layout for B777
 - Jet Aviation e.g. VIP configurations
 - Zodiac e.g. novel business class cabin

e.r.galea@gre.ac.uk

٠

16 Oct 2014

Validation of Egress Simulations

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

Blind Validation Results

airEXODUS predicted exit usage reflected in the experimental results.

16 Oct 2014

SMARTFIRE Software

- Developed by FSEG and under constant development since late 1980s
- Software is CFD based.
- Main features include:
 - Two equation K EPS turbulence model
 - 24 ray discrete transfer radiation model.
 - Eddy Dissipation combustion model.
 - Advanced flame spread model for aircraft fire simulation.
 - Advanced toxicity model for predicting generation of toxic species in fire.
 - Unstructured mesh capability for dealing with complex curved geometries
 - Parallel implementation capable of utilising standard PC computers connected via Ethernet.
 - Developing a GPU version with speedups of 30X achieved.

SMARTFIRE Aircraft Fire Validation Model Application — simulation of C133 FAA test

- > Time to flashover
 - Often taken as the time when upper layer temp exceeds 600°C
 - In this study: time when the seat (Row 5) top temperature rapidly escalates
 - Experiment: **210** seconds
 - Prediction: 225 seconds
- > Flame front

At 20 seconds

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014 At 180 seconds

buildingEXODUS and SMARTFIRE Simulation of Station Nightclub Fire

Link fire simulation directly with evacuation analysis
Directly expose agents to developing hazard environment
Predict fatalities and injury levels.

- Last survivor evacuates after approx 127 seconds.
- Simulation predicts :
 - •84 fatalities compared with 100 in actual incident.
 - •25 serious injuries, of which 6 are life threatening.

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

- Fire Simulation Results Scenario 3 Light Extinction Coefficient (2.30/m is equivalent of visibility of 1 m)
 - Over first 100 sec, poor visibility restricted to cabin section containing rupture
- Temp at 1.7 m above floor (skin burns occur at temp above 120°C, incapacitation follows after 1 minute exposure to 190°C).
 - Over first 100 sec, dangerous temp restricted to cabin section containing rupture

RED: 185^oC: GREEN: 100^oC; LIGHT BLUE: 58°C

.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

Average egress time for 33 69.3 sec, a slight increase over 30 01 65.9 sec.
 12 fatalities and 25 pays injured due to heat exposure. 3 of these have life.

 12 fatalities and 25 paxs injured due to heat exposure, 3 of these have life threatening injuries (FIH>0.6)

EVACUATION CERTIFICATION International Evacuation Certification Trial requires:

- 50% of exits available, one from each exit pair.
 - It is assumed that post-crash external fire occurs on one side of the aircraft and so it is further assumed that all the exits on that side of the aircraft are unavailable.
- 90 seconds maximum allowable time for evacuation.
 - It is assumed that after 90 seconds, conditions inside the cabin are non-survival or that flashover has occurred.
- Applied to all passenger aircraft.
 - Size or configuration of aircraft irrelevant, so same rules apply to A320 and A380.

Manchester, UK

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

FAA test 1989

22/08/85

PROBLEMS WITH EVACUATION CERTIFICATION

☐ (Some) Shortcomings of Certification Trial

- Certification trial exit configuration is **not representative**:
 - most survivable accidents involve a different exit combination from that used in the certification trial [Galea 2006]
- Certification trial exit configuration is **not challenging:**
 - with 50% exits available for evacuation, the standard certification trial exit configuration results in the shortest evacuation time [Galea 2007]
- 90 second requirement is **arbitrary**
 - Influence of fire on survivability is not considered
- Certification trial is **not robust**:
 - Only a single evacuation trial is conducted which cannot provide a robust representation of the natural variation in the evacuation process.

AIM OF THIS STUDY

□ For an aircraft configuration that has satisfied the FAR25.803 certification requirements, investigate the deficiencies of the certification trial as a safety indicator in post-crash situations involving fire

Cabin Configuration

- Narrow body aircraft similar to B373 or A320
- Three exit pairs (T-C/B, T-III, T-C/B)
- Seating for 149 passengers

Gamma Fuselage Rupture

- Assume a cabin rupture located between the L2 and L3 exits
- Size of rupture is 0.89 m wide and 1.65 m high (the area of a T-B exit).

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

TWO EXIT SCENARIOS

Two Exit Scenarios are considered:

Scenario	S1	S2
Open exits	R1, R2 and R3	R1, R2 and L1

- S1: normal certification exit configuration
- S2: exit combinations commonly found in real accidents, e.g. Manchester Airport B737 fire, 1985.

Cabin configuration

RAeS Hamburg Branch 16 Oct 2014

FIRE SIMULATION SET UP

Geometry Set Up

- External fire volume is 2.5m by 3.0m; HRR 7.8 MW, so that flame temp are close to experimental values of 1,480 K
- Mesh: 149,496 computational cells
- Red: external fire volume; Green: seats; Brown: walls; overhead bins removed for good visualization

Fire Models

- Flame spread model for ignition of solid surfaces;
- Eddy Dissipation Combustion model for release of heat due to combustion of gas fuel generated by pyrolysis of solid materials;
- **48-ray Radiation model** for exchange of heat due to radiation;
- **Toxicity model** for the generation and transportation of toxic fire gases;

External fire

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

SMARTFIRE set up

SIMULATION SET UP

Material Properties

- Same as those in the previous work of C133 cabin fire simulations [Wang et al, 2013]
- **Molecular structure:** Epoxy $CH_{1.3}O_{0.2}$ for all materials; Eexternal Kerosene fire is represented as Epoxy
- Heat release rate

A hypothetical heat release rate curve, derived from small-scale experimental tests; satisfies the criterion of $65 \text{ kW/m}^2/65 \text{ kW}$ -

min/m²

• Other model parameters such as density, conductivity, specific heat, ignition temperatures, yields of toxic gases, etc. derived from various publications.

e.r.galea@gre.ac.uk

IMPACT OF OPEN EXITS ON FLASHOVER

HRRs and Times to Flashover

- Similar HRRs up to 250 seconds for the two scenarios;
- Onset of flashover: defined as the time at which the predicted interior HRRs rise sharply
- Time to flashover >> 90 seconds certification requirement

Scenarios		Time to flashover (s)	
S1		325	
S2		275	

Predicted HRRs from combustion of cabin interior material

S2 is more challenging than S1 (flashover occurs 18% sooner in S2) and both at least 3x longer than 90 s

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

IMPACT OF OPEN EXITS ON HAZARDS

Temperature (as Example)

- Zone 17 in the aisle close to the over-wing exit
- With an air temp of 185°C, there is a 1 min survivability time
- Lower layer temp reach 185 °C: soon after onset of flashover in each scenario

16 Oct 2014

IMPACT OF OPEN EXITS ON HAZARDS Temperature (as Example)

16 Oct 2014

EVACUATION SIMULATIONS Evacuation Set Up

- Type B/C exits in the front/rear and Type III over the wing
- **149 passengers** with response times no more than **8 seconds**;
- Passengers move to **their nearest viable exits**
- Results for each scenario represents average of **1000 repeat** simulations
 - 10 different certification compliant populations
 - Simulation repeated 100 times for each population
 - Passenger seating allocation is **randomised** in each simulation
- Egress times refer to **on-ground** times

Evacuation without fire

certification exit configuration **S1**

realistic exit configuration S2

- Exit locations impact average travel distance: S1: 6.1m; S2: 10.2m
- Exit locations impact achieved flow rates, **58.8 ppm** for exit R1 in **S1** and **38.4 ppm** for exit R1 in **S2**
 - the aisle is unable to supply sufficient passengers to keep both exits (R1, L1) working at full capacity in S2
 - Lower flow rate implies longer wait time in the ailse
- For Scenario S1, cabin can be emptied within 71.2s without fire; satisfying '90s requirement'; however, exit configuration Scenario S2 requires evacuation time of 98.1s, longer than '90s requirement';

S2 is more challenging than S1

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

Evacuation with fire

Sc	enarios	Flow rate at R1 (person per minute)	Travel Distance (m)	Evacuation time (s)
S1		29.9	8.2	149.2
S2		13.5	12.3	260.8

- As noted in the evacuations without fire, S2 has lower exit flow rate and longer average travel distance than those in S1;
- Evacuation times in the presence of fire have greatly increased compared to the non-fire cases:
 - 149.2 s for S1,
 - S1 with fire is 2X as long as case without fire (71.2 s)
 - **260.8** for S2
 - S2 with fire is 3X as long as case without fire (98.1);

S2 is more challenging than S1

e.r.galea@gre.ac.uk

Starting location (open symbols) and death locations (grey symbols) for a single S2 simulation

1.2 fatalities in S1

- Located in seats adjacent to the rupture, died of heat from external fire, with a short survival time/travel distance;
- **14.6 fatalities in S2**
 - Located in the rear of the cabin, died on the seats near the rupture, aisle, and places near the exits; with longer survival times/travel distances

S2 is more challenging than S1

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

S2 is more challenging than S1

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

16 Oct 2014

Wide-Body Analysis

> Geometry

- > Aircraft is based on a A350 geometry as used in the AircraftFire FP7 project.
- Four pairs of Type A exits
- Composite fuselage and composite interior panels materials not necessarily those used in the A350.

Population

• 297 passengers and crew are generated from the default certification parameter set.

Evacuation without Fires

- The configuration satisfies the 90 s certification trial requirement in Scenario A (R1,R2,R3,R4) with an evacuation time 72.1 s
- Scenario C (L1, R1, L2, R2) produces an evacuation time of 140.4 s, much longer than 90s; the exit locations affect the travel distance and flow rate, subsequently the evacuation time

Local flashover occurs at 55 s, much sooner than the required evacuation time;
Not all the open exits are viable for evacuation

- Exit R4 is never used as it is engulfed by the external fire;
- Exit R3 becomes unviable after the cabin interior fire has developed;

>55 fatalities occur from 111.8s to 270.1s into the evacuation.

.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

Burn-through Scenarios with Wind

- Evacuation with post-crash fire and wind
- Exits R1, R2, R3 and R4
- External fire makes R4 nonviable almost immediately.
- Aluminium fuselage: burnthrough occurs with flashover at 119 s and exit R3 becomes unviable; evacuation completed at 226s with 3.2 fatalities;
- Composite fuselage:
 evacuation completed after
 85s without any injuries.

e.r.galea@gre.ac.uk

RAeS Hamburg Branch 16 Oct 2014

O() Spd: CLOCK : : : 1 2 3 4 5 6 7 8 9 10 000 **VIEXODUS** Composite http://fseg.gre.ac.uk

Aluminium

Composite Fuselage, Fire and Wind – NO Burn-Through

Low CO concentrations at 1.7m above cabin floor at 600 s

- Exit R4 is engulfed
 Based on AircraftFire data, the composite fuselage does not burn through however, consider the impact of fire hazards on paxs during evacuation.
- Fire hazards heat and toxic gases (excluding SO₂) from the investigated composite fuselage have negligible impact on evacuation
 - No passengers are injured by heat or toxic gases from the combustion of the composite fuselage;
 - The unavailability of Exit R4 (even it is opened in exit scenario A (R1, R2, R3, R4) affects the evacuation time
- > Irritants from composite materials
 - If SO₂ was produced in the same quantities as CO (as observed in FAA tests (Marker 2011)), it could have a significant impact on passengers during evacuation (approx 18 paxs are at high risk of incapacitation)
 - **Recommendation:** composite materials with a low yield of highly irritant compounds such as SO_2 should be used in aircraft construction

e.r.galea@gre.ac.uk

CONCLUSIONS

- Evacuation performance has been compared between two different exit scenarios for an aircraft satisfying 90 second certification test;
 - A narrow body aircraft configuration similar to a B737 or A320.

S2:

- Study involved a given fire size and assumed post-crash fuselage rupture.
- The certification trial exit configuration **S1** is less challenging than the exit scenario **S2** which is more likely to occur in real post-crash accidents by producing:
 - Longer time to flashover (325 s > 275 s);
 - Shorter required evacuation time without fire (71.2 s < 98.1 s)
 - Shorter evacuation time with fire (149.2 s < 260.8 s); and
 - Fewer fatalities (1.2 < 14.6)

S1:

CONCLUSIONS The aviation industry certification trial requirement

- 50% of exits available, one from each exit pair.
- 90 seconds maximum allowable time for evacuation.

is inappropriate as a safety indicator as it is not:

- Representative of likely survivable accident exit configurations
- A sufficiently challenging exit configuration.
- The alternative exit combination which utilises the same number and type of exits as the current standard, but located in a more realistic accident combination provides a more Representative and Challenging exit combination and so should be used for certification applications.
 - I It can be argued that modelling should also be used for certification analysis and used to investigate additional exit configurations and additional repeat cases.

e.r.galea@gre.ac.uk

CONCLUSIONS

- Coupled fire and evacuation simulations can provide more insight into the fire safety of aircraft cabins than what can be found in certification trials
- Also provides significant insight when used forensically for accident analysis.

