

Aviation and Environment – Global Strategies for Future Air Transport

Hamburg Aerospace Lecture – 11 May 2017 Thomas Rötger, IATA

https://doi.org/10.5281/zenodo.7396634

2

Overview

- ↗ Aviation and climate change
- → Fuel-efficient aircraft technologies
- ↗ Sustainable aviation fuels
- ↗ Local air quality
- ∧ Noise
- Aircraft decommissioning and recycling

Aviation and climate change

Aviation climate impact

How much of man-made CO₂ emissions comes from aviation?

Air transport climate change contribution

Aviation faces emissions challenge...

.....but our track record is strong

8

DGLR Hamburg

Industry Commitment on Climate Change

Geneva 2008

DGLR Hamburg

Four pillars of climate action TECHNOLOGY **OPERATIONS** 0 **INFRASTRUCTURE MARKET-BASED** MEASURE

Three goals...

(commitment by all aviation industry sectors in 2009)

GOAL 1

PRE-2020 AMBITION

1.5% ANNUAL AVERAGE FUEL EFFICIENCY IMPROVEMENT FROM 2009 TO 2020.

GOAL 2

IN LINE WITH THE NEXT UNFCCC COMMITMENT PERIOD

STABILISE NET AVIATION CO2 EMISSIONS AT 2020 LEVELS WITH CARBON-NEUTRAL GROWTH. **IDOD+IM** <u>GOAL 3</u>

ON THE 2°C PATHWAY

T(0)

REDUCE AVIATION'S NET CO2 EMISSIONS TO 50% OF WHAT THEY WERE IN 2005, BY 2050.

ICAO and Environment

ICAO Assembly (191 States)

ICAO Council (36 Members)

Committee on Aviation Environmental Protection (CAEP) 24 Members (States)

15 Observers (States, Intergovernmental organisations, Industry and NGOs)

WG1	WG2	WG3	FESG	MDG	GMTF	AFTF	ACCS	ISG
Noise technical	Airports & Operations	Emissions Technical	Forecasting & Economic Support	Modeling & Databases	Global MBM Technical	Alt Fuels	Aviation Carbon Calculator	Impact & Science

ICAO Environmental Goals

- Limit or reduce the impact of aviation GHG emissions on global climate
- Limit or reduce the impact of aviation emissions on local air quality
- Limit or reduce the number of people affected by significant aircraft noise

ICAO Basket of measures for climate action

- ↗ Operational measures
- ↗ Market-based measures (CORSIA)
- Alternative fuels for aviation

CO₂ Standard – definition

- CO₂ standard adopted in 2016 after 6 years of development and negotiations

$$MV = \frac{1/SAR}{RGF^{0.24}}$$
 as a function of MTOW

- R SAR: Specific air range [km/kg]
 - ↗ (1/SAR: "fuel consumption" [kg/km])
- **7** RGF: Reference geometric factor (similar to cabin area)

CO₂ Standard – certification limit

CO₂ Standard – applicability

	2020	2021	2022	2023	2024	2025	2026	2027	2028		
New types	Ap	plica	tions	for n	ew ty	pe ce	ertifica	ation			
In-production types					All modified versions By 2028 all InP types						
In-service aircraft				(not a	appli	cable	e)				

Not designed to serve as a basis for operating restrictions or emissions levies

Fuel-efficient aircraft technologies

Strong track record

- ↗ Over the last 50 years
 - → Hydrocarbons: -90%

 - ∧ Noise: -75%
 - → Fuel burn: -70%
- **7** Well on track with our target:
- ↗ New aircraft help
 - A380, B787, A350 consuming less than 3 I / 100 pax km

Research & Technology Goals ACARE Environmental Goals

	Noise	CO ₂	Other emissions	Green life cycle	Alternative fuels
Vision 2020 objectives (ref 2000)	 Halve perceived noise = - 10 dB per operation 65 LDEN at airport boundaries (no- one impacted outside airport boundaries) 	• Decrease CO ₂ by 50% per pass.km	 Decrease NO_x by 80% (eq 60%/CAEP6) 	 Progress in reducing the environmental impact of the lifecycle of aircraft 	None
Flightpath 2050 objectives (ref 2000)	 Reduce by 65% perceived noise = - 15 dB per operation 	 Decrease CO₂ by 75% per pass.km 	 Decrease NO_x by 90% Europe at the forefront of atmospheric research Emission-free taxiing 	• Air vehicles are recyclable	Europe centre of excellence on sustainable alternative fuels 11 May 2017

ERA System Level Goal – Multi-Objective In Nature Subsonic Transport System Level Metrics

NASA Subsonic Transport Metrics

			v2013.1	
TECHNOLOGY	T (Tee	S 4-6)		
BENEFITS*	N+1 (2015) N+2 (2020**)		N+3 (2025)	
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-52 dB	
LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%	
Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%	
Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%	

 Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines

** ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015

CO2 emission benefits dependent on life-cycle CO2e per MJ for fuel and/or energy source used

The ERA Project's goal is to identify and mature technologies and advanced configurations that, when integrated, can simultaneously meet the N+2 noise, LTO NOx, and fuel burn reduction metrics

Technology – Fuel saving potential (IATA Technology Roadmap – TERESA project with DLR Hamburg)

34000 new aircraft over next 20 years (20000 growth, 14000 replacement) Investment \$4.5 trillion

Stepwise fleet renewal

Future fuel efficiency improvement occurs stepwise, depending on introduction timescale of new aircraft generations (every 15 to 20 years in each seat category)

Radically new aircraft configurations

(AIRCAT project with DLR Hamburg(

- Revolutionary aircraft configurations: Limited improvement potential
- $\, {\bf 7} \,$ Driven by environmental goals \rightarrow
 - Many new projects on radically new configurations over the last few years:
 - Other than tube-and-wing (e.g. blended wing body)
 - R New propulsion (e.g. open rotor)
 - New structural configurations (e.g. double-bubble, strut-braced wing, box wing)
 - R New energy sources (e.g. battery-powered)

DGLR Hamburg

Operational impacts

- ↗ Non-tube & wing configurations blended wing body:
 - Passenger experience, Evacuation, Airport compatibility
- ↗ Slower flight speed open rotor, battery aircraft:
 - Row Flight time, ATM integration Row Flight time, ATM integration
- ↗ New energies electric, LNG etc.:
 - Connect airport to supply network
 - Adapt aircraft engines and fuel/power systems
- Radically new operational schemes could further contribute to fuel/CO₂ efficiency, e.g. formation flight

Impact on global fuel efficiency

- ↗ Radically new configurations:
 - Slow market penetration due to fleet renewal cycles
 - Could play a larger role beyond 2050
- - Will have to contribute largest part to 2050 CO₂ reduction goal
 - Fast uptake of drop-in fuels once available

Source: IATA/DLR AIRCAT study

Outlook

- Radically new concepts and technologies will likely be needed in the long term to meet the aviation climate goals
- ↗ Need to secure globally:
 - Reliable continuous energy supply

 - Passenger acceptance
- **7** Way forward for implementation
 - Start low-level technology development early
 - Plan infrastructure and operational adaptation early
 - Plan long lead times and high investments
 - Accelerate market penetration

Sustainable aviation fuels

Airlines supporting sustainable jet fuel commercialisation Commercial-Scale Deals Operational Airline/Supplier Feasiblity offtake agreements, R&D/Proof e.g. of Concept UNITED MARTIN Over 2000 commercial flights (single or limited series): • 1st technical Bioports certifications Lufthansa 1,100+ flights **JOSL** Test/demo flights Los Angeles World Airborts 360+ flights virgin atlantic **OSLO AIRPORT** in preparation: 260+ flights **LEIPZIG**·HALLE etc. AIRPORT and 20 other airlines UTTELDEUTSCHE AIRPORT HOLDING **BioPort Holland** etc. AÉROPORTS DE **M**NTRÉAL 2011 - 2015 2016 +~2008 - 2011

Commercial Readiness

Reaching Commercial Scale

Airline/supplier offtake agreements

- First bioport with regular operations: Oslo Airport started 22 Jan 2016
- United/AltAir operations started 11 March 2016
- Largest agreement (United/ Fulcrum) over 270'000 t/year
- In addition, strong investments by US government (incl. military)

Requirements for sustainable aviation fuels (SAF)

- - 7 Can be blended with existing jet fuel
 - No need for adaptation of aircraft / engines nor parallel infrastructure
 - Technically certified as equivalent to conventional jet fuel
- - > Essential requirement for majority of airline customers
 - Working with ICAO on globally harmonized criteria
- - Bridge the cost gap with Jet A-1 fuel
 - Ensure a level policy play field between road and air
 - Figure Figure Figure A State A Stat
- **7** Cooperation
 - Engagement of producers, suppliers, aviation industry and governments, EC and ICAO is essential

Sustainable aviation fuels – Timescale

Sustainable aviation fuels – Way forward

- Sustainable aviation fuels can be a major instrument to meeting aviation's long-term emissions reduction goals
- ↗ Since early 2016, continuous supply starting:
 - ↗ Airline/supplier offtake agreements (mostly US)
- **7** Today's barriers are economic rather than technical
- ↗ Sustainability is key requirement for most aviation customers
- Positive political and legislative framework needed
- In the mid-to-long term, non-biological SAF solutions (from industrial waste gases, Power-to-Liquid, Solar jet fuel)

Global market-based measure

Aviation's global market-based measure

- Paris Agreement provided momentum to ICAO discussions
 - Aviation and shipping to be progressed through ICAO and IMO
- **7** Historic decision at ICAO Assembly
 - Nearly all 191 ICAO States supported 'CORSIA'
- ↗ Industry was instrumental in agreement
 - Seven years since industry set goals and started pushing for a global MBM

How does CORSIA work?

Addresses increase in CO_2 emissions from international civil aviation above 2020 levels

		PILOT PI	HASE	F	irst pi	HASE	SECOND PHASE								
	(r	VOLUNTARY States have volunteered to be part of the scheme from 2021 (more States are encouraged to volunteer).					MANDATORY Exemptions for: Small Islands, Least Developed Countries, Land-locked Developing Countries and States which have less than 0.5% of air traffic (although they can still volunteer).								
MONITORING, REPORTING & VERIFICATION TO SET THE BASELINE		Opera emissions	tors in the St based on th aviat	ates include e average C ion sector.	ed will offse O2 growth o	t If the	Operato based o growth	rs will offse n average C of the sector	t 02 r.	Offset o include individu	obligations sl over 20% of ual operator	hift to f growth.	Offset o over 70 individe	obligations s 1% based or ual operator	shift to be n growth.
2019 2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
		()VFR 80	% 0F	THF GF	ROWTH	N AIR	TRAFF		FTFR	2020 W	/II I BF	OFFSF	т	

DGLR Hamburg

2019

States included in the first (voluntary) phases

Local air quality

Local air quality

- Focus on airport surroundings, usually close to urban and residential areas
- Aircraft emissions contributing to local air quality (LAQ) concerns:

- Regulated in ICAO certification standard (Annex 16, Vol. II)
- New ICAO standard under development (to replace "smoke number")
- New standard will consider PM mass <u>and</u> number (important for ultrafine particles)

Local air quality

Multitude of emissions in airport areas:

- ↗ Aircraft operations
 - ↗ Landing, takeoff, taxiing, turnaround
- - ↗ Fuel & catering trucks, tugs etc.
 - R > ¬ Can be run electric, with hydrogen, etc.
- Other airside and landside vehicles
- Stationary power generation plants
- Maintenance and handling activities
 Fuel storage, de-icing, etc.
- **7** LAQ measurements do not distinguish origin of pollutants
- Alternative fuels reduce LAQ impact

DGLR Hamburg

Noise

Noise

↗ Aircraft noise reduction at source:

- ¬ 75% over the past 50 years (minus 20 dB)
- ¬ 50% expected from 2000 to 2020 (minus 10 dB)

↗ Noise stabilized in spite of traffic growth

- Remains, the main obstacle to airport development
- Annoyance is the problem, not noise
- Growing pressure, especially in Europe, to put traffic limits, ban night operations, etc.

Development of aircraft noise emissions

DGLR Hamburg

Noise footprint reduction

Um 50 Prozent kleinerer Lärmteppich durch Innovationen

Vergleich der Lärmkonturen von A320 Modellen bei einem Maximalschallpegel von 85 Dezibel

www.fluglärm-portal.de | Quelle: Deutsche Lufthansa AG, maximales Startgewicht: 73,5 t

Engine and airframe noise

Engine bypass ratio

Aircraft decommissioning and recycling

Aging aircraft world fleet

- - More than 3000 commercial aircraft over 25 years old and still in service
 - ↗ Average service time of an aircraft 25+ years
 - ↗ Significant variability depending on business model
 - Recent trend to decommission aircraft at lower age
 - Many large airlines sell aircraft well prior to decommissioning
 - Specific target group of carriers with old aircraft (including numerous cargo airlines) financial capacity usually low

Needs for decommissioning

Decommissioning process	Aircraft	Dismantling facility	Estimated number		
Controlled	Flyable	Fixed	> 3000		
(including storage, e.g. Mojave desert)	Immobilised	Mobile only			
Uncontrolled (at airfield edges)	Immobilised	Mobile only	Unknown		

Aircraft end-of-life issues

- - Re-use of parts/equipment that have lost certification (black market)
 - Aircraft cut up in questionable safety conditions
- **7** Environment
 - Hazardous substances (e.g. hydraulic fluids, asbestos, depleted uranium ballast)
 - R Soil and water contamination
 - > Waste management regulations
- **7** Operations
 - Obstruction of airport areas
 - Airport expansion inhibited

Economic aspects

- Airlines should be encouraged to do controlled decommissioning
 - Avoid disincentivising costs (target group is financially weak)
 - Optimised re-use / recycling should allow maximal benefit from components' residual value

Re-use and recycling

- ↗ Many pieces of equipment (engines, avionics, ...) can be re-used
 - Represents much higher value than metal structure
 - Rigorous safety control needed → new identification systems (RFID) can help
 - Avoid equipment losing certification
- ↗ Various metallic alloys, mainly Al
 - R > Separated by type?
 - \rightarrow Higher value, but higher separation costs
- ↗ Carbon-fibre composites (e.g. tailplanes)
 - Recycling methods under development
- **7** For the future:
 - Increased use of recyclable materials in new aircraft
 - "Design for deconstruction"

Way forward

- Develop best practices for controlled aircraft decommissioning
 - Best use of residual value
 - Minimize environmental and safety risks
 - IATA-led industry group working on best practices manual
- ↗ Make <u>mobile</u> decommissioning services accessible all over the world
- ↗ Earlier decommissioning accelerates fleet renewal
 - Rev Enhances implementation of new technologies

Conclusions

- ↗ Environment is a major challenge for aviation
- ↗ Aviation represents 2% of man-made CO₂ emissions, but growing
- Aviation is the first global industry sector committing to ambitious climate goals
- ↗ ICAO supports these goals with a basket of measures
 - **¬** Global market-based measure, CO_2 standard etc.
- Technology goals have led to an impressive number of innovation activities
 - Sustainable aviation fuels
 - Radically new aircraft configurations and propulsion energies
- New standards drive reduction of noise and pollutant emissions
- Emerging topic: Aircraft decommissioning and recycling

Thank you!

RoetgerT@iata.org