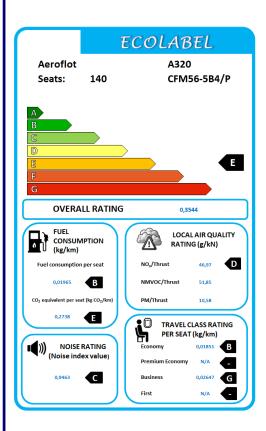


Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences


AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

Ecolabel for Aircraft – Definition and Application

with backup slides

Dieter Scholz Hamburg University of Applied Sciences

Hamburg Aerospace Lecture Series (Aero Lectures) DGLR, RAeS, VDI, ZAL, HAW Hamburg Online, 04 June 2020 https://doi.org/10.5281/zenodo.4462457

Ecolable for Aircraft – Definition and Application

including work of:

- Tim Haß (Bachelor Thesis)
- Lynn Van Endert (Master Thesis)
- Sophie Sokour and Tobias Bähr (Project)
- Benjanin Kühner
- Alejandro Ridao Velasco (Bachelor Thesis)

Abstract

Background: In 2019 EASA started work on a labeling system for the aviation industry. This let to a workshop on 2019-10-24, but activities stopped already shortly after that date. An "Ecolabel for Aircraft" was proposed and published by HAW Hamburg already in 2017.

Motivation: With IPCC Reports, "Fridays for Future", and "Flygskam", the aviation industry is getting into defense. Recent industry climate initiatives failed to convince, because an agreed metric is missing, based on which the proposals could be discussed.

Method: The proposed label follows requirements from ISO 14020 Series: Environmental labels and declarations. The label considers resource depletion (fuel consumption), global warming (equivalent CO2), local air quality (NOx) based on ozone formation potential and particulate matter formation, and finally noise. Seat arrangements in different travel classes are considered based on the cabin floor area occupied by each passenger. Even a comparison of airline fleets is possible with the proposed metric.

Results: Modern aircraft are better than older aircraft designs. Different modern engines yield similar environmental results. Low cost carrier are better than legacy carrier, because they transport more passengers in the same cabin. Modern propeller driven aircraft have the lowest environmental impact. They are environmentally much better than comparable jets. If travel plans require use of an aircraft, passengers should select a flight on the shortest route and select the best aircraft-airline-combination based on the ecolabel. Airlines that operate a modern fleet, have tight seating in a single (economy) class, and are known for their high load factor may not be fun to fly with, but are better for the environment. Obviously, a ticket in the economy class should be booked, if the cabin features more than one class.

Ecolable for Aircraft – Definition and Application

Table of Content

- New Motivation: #Flygskam, #StayGrounded
- EASA's Workshop and EASA's Vision for a Label
- ICAO Annex16, Volume 3: Aeroplane CO2 Emissions
- Idea / Goal & the "Ecolabel for Aircraft"
- The Beginning in 2012
- Priorities, Review, Standards
- Life Cycle Assessment (LCA)
- Fuel Consumption
 - Source of Information (Payload & Range Diagram)
- Global Warming, Local Air Quality, Noise
- Application of the Tool
 - Airbus vs. Boeing / Fleet Comparison / LLC / Turboprop
- Summary & Next Steps
- Contact & Quote This Document

New Motivation: #Flygskam, #StayGrounded

Strategy 7

Flight shame is changing the face of travel

By Kerry Reals | 6 September 2019

(in 🕓 🖂

Swedish might not be one of the world's most widely spoken languages – but most people are now familiar with the term "flygskam". This "flight shame" campaign to make people think twice about travelling by air because of concerns about the aviation industry's impact on climate change is gathering pace – and it is already having an impact on passenger numbers in its country of origin.

As more people sign up to movements on social media carrying hashtags such as #StayGrounded and #FlyingLess, airlines face more public pressure than ever to show that they are serious about cutting carbon dioxide (CO2) emissions.

https://perma.cc/Y5N4-7MZZ

New Motivation: #Flygskam, #StayGrounded

Kai Bauer, principal adviser for environment and sustainability to EASA's strategy and safety management director, says one of the "triggers" for examining an aircraft emissions labelling system was the "changing world" of public opinion on climate change. "In other industries, labelling systems have been used to communicate environmental performance to the general public. In this changing world, a labelling system for the aviation industry can play a role," says Bauer. "A starting point for our exploration was to address concerns expressed by European citizens."

https://perma.cc/Y5N4-7MZZ

FlightGlobal

New Motivation: #Flygskam, #StayGrounded

RESEARCH EFFORT

EASA surveyed 6,000 respondents from 15 EU member states and found that 80% were "open to receiving environmental information in the form of a label", and the majority wanted the information to be available "during the booking process or on the boarding pass".

The agency is in the "proof of concept" stage for the system and aims to set out a more detailed plan by the end of the year, with the intention of launching it in 2020. One option under consideration when it comes to presentation is a colour-coding system so "people can easily understand where there is good performance", says <u>Bauer</u>. "The aim is to increase awareness and transparency, and ultimately help passengers make more informed choices."

While the details are still being hammered out, EASA aims to use data generated by the certification process for the ICAO noise and emissions standards, including the new CO2 standard from 2020, as the basis for its proposed grading system. The labelling system is "intended as a voluntary scheme", but Bauer says that despite some concerns over the type of data that ends up being used, some airlines expressed broad interest in the idea: "We've had initial discussions with some airlines and we've found broad agreement that there's a need to communicate on environmental performance.

"Airlines also had legitimate concerns to make sure the data is robust and doesn't compare things that aren't comparable." https://perma.cc/Y5N4-7MZZ

ICAO Noise Standard ICAO Emission Standard ICAO CO2 Standard

Environmental Label Programme – Stakeholders Workshop

🔁 24 Oct 2019

Aviation is increasingly challenged from an environmental performance and sustainability perspective (IPCC Report,
"Fridays for future", "Flygsham").
Citizens receive very little information on the actual aviation environmental performance. Furthermore, the information

provided is frequently inconsistent and contradictory, as many measures and calculation methods exist.

Passengers, general public and people around airports should be provided with **visual, relevant, consistent and up**to-date information on aviation environmental performance.

It will help to increase transparency and help passengers to make more informed choices.

As shown in other industries, an **environmental label is an effective tool for communicating environmental performance.**

To develop the concept EASA engaged with Member States, Industry and NGOs.

The label will initially focus on the performance of aircraft technology and may later be expanded to look at other aspects, like the overall CO2 performance, airlines, airports or the use of sustainable aviation fuels.

This technical workshop will provide information and allow for discussions about the rationale, metrics, graphical concepts and communication elements around environmental labelling for aviation. Interventions will be from Member States, Industry and NGOs.

Registration

SAB: EASA Stakeholder Advisory Body MAB: EASA Member States Advisory Body NGO: Non-Governmental Organization

The meeting is open only to MAB and SAB members/alternates/observers and NGOs.

	_	~		
		(0	nta	CT.

HAMBURG

Hamburg Aerospace Lecture Series Hamburg, 04.06.2020

https://perma.cc/ZA25-GE4Q

EASA's Vision for the Label: ICAO Noise, Emission, CO2 Standards

Action area:	Aircraft noise (RMT.0513); climate change (RMT.0514)					
Affected rules:	Annex I (Part 21) and related AMC and GM; <u>CS-CO₂ (new)</u>					
Affected stakeholders:	Design and product authorities (NAAs); M	•	n approval holders	(DAHs); national aviation		
Driver:	Environment	Rulemaking group:	No			
Impact assessment:	Full (by ICAO CAEP)	Rulemaking Procedu	re: Standard	1		
	• E <i>l</i>	ASA rulemaking proces	S			
Start Terms of Reference	Consultation Notice of Proposed Amendment	Proposal to Commission	Adoption by Commission	Decision Certification Specifications, Acceptable Means of Compliance, Guidance Material		
	2	3	4	5		
				Today		
13.6.2016	17.1.2017	7.11.2017	12.3.2019	29.7.2019		

https://perma.cc/9TSE-RF87

- ICAO CO2 adopted CO2 standard in 2016 after 6 years of negotiations.
- EASA requirement CS-CO2 introducted after further 3 years in 2019.

International Standards and Recommended Practices	Annex Annex 16 - Environmental Protection - Volume III - Aeroplane CO2 Emissions
Annex 16 to the Convention on International Civil Aviation	1st Edition, July 2017
Environmental Protection	USD 32.00
Volume III — Aeroplane CO2 Emissions First Edition, July 2017	INCLUDES Amendment no. 1
	Language * Format * English \$ 1
The first edition of Annex 16, Volume III, becomes applicable on 1 January 2018. For information regarding the applicability of the Standards and Recommended	Add to Cart

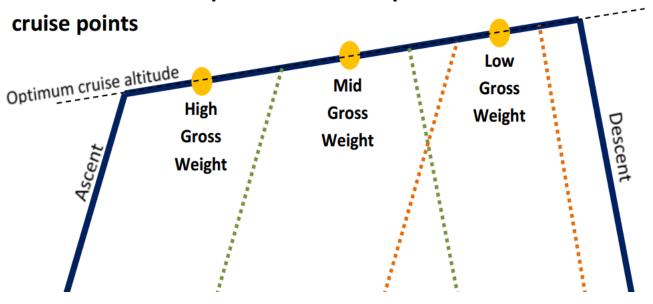
https://store.icao.int/en/annex-16-environmental-protection-volume-iii-aeroplane-co2-emissions http://purl.org/aero/ICAO-2017_CO2-Emissions

Dieter Scholz An Ecolabel for Aircraft

- ICAO CO2 adopted CO2 standard in 2016 after 6 years of negotiations.
- EASA requirement CS-CO2 introducted after further 3 years in 2019.
- Metric Value (MV) is limited as a function of MTOM (see page 13).

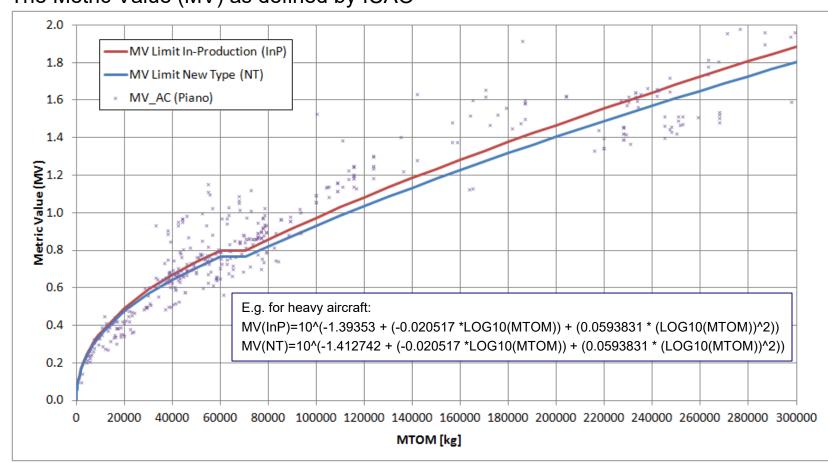
 The I	https://perma.cc/U6R3-RJHE		
(1/SAR)) / RGF ^{0.24}	МТОМ	
Specific Air Range (1/SAR) fuel consumption	Reference Geometry Factor (RGF) similar to cabin floor area *	Aeroplane Maximum Take-Off Mass (MTOM)	* divided by 1 m²

- **1/SAR** (in kg/km) determined for the aircraft either ...
 - o from validated performance model or
 - from flight test: SAR = TAS/ W_f


where: TAS is the true air speed, W_f is total aeroplane fuel flow.

- An RGF-exponent of 1 would normalize the fuel consumption by a payload substitute.
- The "magic" exponent 0.24 obscures the metric. So, MV is not helpful for an ecolabel!

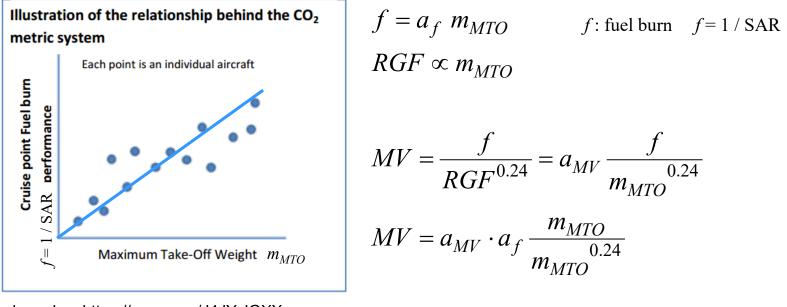
 1/SAR determined as the average of 3 conditions (given by aircraft mass in flight): high gross mass: 92% MTOM low gross mass: 0.45 MTOM + 0.63 MTOM^{0.924} mid gross mass: average of high and low gross mass.



An illustrative example of the three representative

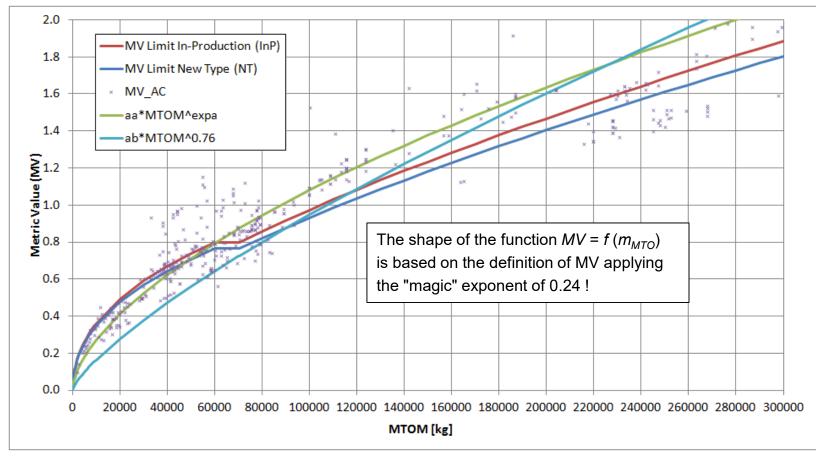
https://perma.cc/J4JY-JGXX

• The Metric Value (MV) as defined by ICAO


Compare with https://perma.cc/P8SG-8K5N Piano data: https://perma.cc/J6UF-RHMJ Equations are given in the ICAO standard

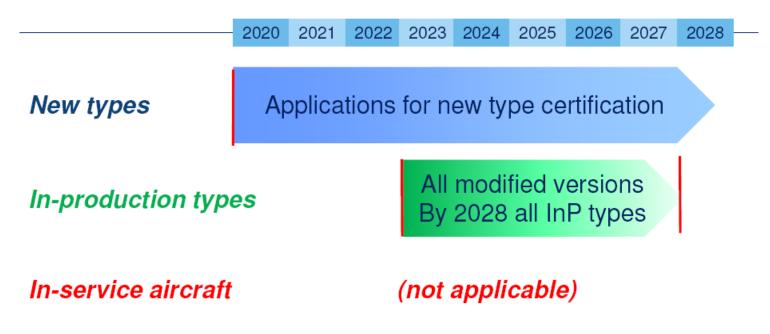
Dieter Scholz An Ecolabel for Aircraft Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 13 Aircraft Design and Systems Group (AERO)

• The Metric Value (MV) – Attempt of a Derivation


based on https://perma.cc/J4JY-JGXX

$$MV = a \cdot m_{MTO}^{0.76}$$
 or
 $MV = a \cdot m_{MTO}^{x}$

• The Metric Value (MV) – ICAO and Derivation Compared


Excel Solver, minimum of error square: aa = 0.0011, expa = 0.59874, ab = 0.00015, Excel: https://doi.org/10.7910/DVN/FFQPEP

Dieter Scholz An Ecolabel for Aircraft

CO₂ Standard – applicability

https://doi.org/10.5281/zenodo.4461948

ICAO CO2 Standard / EASA CS-CO2 are criticized:

- Green and Jupp: ICAO goal of reducing fuel used per revenue ton-kilometer performed and makes no reference to payload. This defect could be eliminated simply by omission of the exponent 0.24 of the Reference Geometric Factor (RGF). Retaining the RGF to the power unity and multiplying it by an appropriate value of the effective floor loading would convert it to what the 37th Assembly of ICAO called for a statement of fuel used per revenue ton-kilometer performed. Finally, correlating the metric against design range. (https://perma.cc/4LUW-KKPH)
- International Coalition for Sustainable Aviation (ICSA): "It is critical that ... the metric values be made public along with the measured and certified SAR points used to establish them." "Such transparency will also provide researchers, industry, the public and regulators access to accurate information on aircraft fuel efficiency performance for the first time. The present situation where only estimates are in the public domain is unacceptable." "Six years of intense effort have failed to produce a CO2 standard for new types or in production aircraft that will reduce emissions beyond what they might otherwise have been without the standard. Given the expected growth in aviation CO2 and the urgency of adopting all feasible mitigation measures as the Paris agreement so starkly underlines, this result is deeply disappointing. (https://perma.cc/69B3-RE5D)

ICAO CO2 Standard / EASA CS-CO2 are criticized:

- Transport & Environment: "extraordinary is the static concept of the standard" "CAEP decided that the stringency options for the standard would all be based on TRL8 (technology readiness level 8 – i.e. technology already flying) in year 2016." "Aircraft efficiency scores (MVs) are planned to be declared on a voluntary basis only and with only partial data revealed making it very difficult to compare aircraft efficiency. Civil society believes all efficiency data including the three measured and certified specific air ranges, should be published." "Over 90% of global [aviation] emissions stem from large Airbus and Boeing aircraft. They are the emissions which the standard must first address effectively." (https://perma.cc/F9NP-LRDX)
- **Simos** (Piano): One fatal flaw ... is that the metric ignores payload and distance. Yet aircraft produce CO2 only because they carry payloads over distances. Bypassing elementary physics, ICAO chooses to sanctify an irrelevant concoction of ersatz cabin size and a certification weight restriction. It cannot work. ICAO's metric is ... insensitive to the [empty] weight of the aircraft. ICAO is sheltering behind the crude fact that 'large' aircraft produce more CO2. ICAO recognizes that the metric is meaningless in its direct form. ICAO resorts to the MTOW and calls it 'The Correlation Parameter'. (https://perma.cc/Y229-5D9U).
- The metric is unique for aviation and precludes a comparison with other modes of transport.

ICAO CO2 Standard / EASA CS-CO2 are criticized :

- Simos: It is not clear how ICAO's Pass / Fail metric proposes to influence either aircraft design or market behavior towards a reduction of CO2. Aircraft sizing decisions and fleet purchases are both based on strategic and commercial considerations that often result in far from CO2-optimal compositions. (https://perma.cc/2Z89-YK7Z)
- **Transport & Environment**: New aircraft types today may take 10 years to bring to production and cost \$15 billion to develop. Which regulator will fail such an aircraft and see its manufacturer potentially go bust? (https://perma.cc/F9NP-LRDX)

ENVIRONMENT

PRESS RELEASES November 23, 2017 - 17:01

Emails show Airbus writes aircraft CO2 rules; Commission, France, Germany and Spain complicit

Emails between Airbus and the European Commission show that, when drafting climate rules for new aircraft, Airbus was given special privileges in determining essential aspects of the EU's position at the United Nations' aviation body (ICAO). The result is a global aircraft standard which will do nothing to cut the sector's soaring emissions and a regulatory process steeped in secrecy and corporate interests, entirely removed from the normal European democratic process. NGO Transport & Environment obtained the emails via an access to documents request, after Airbus and ICAO opposed the public disclosure of the emails. The correspondence was finally released after an 18-month appeal process.

https://perma.cc/65H6-5UNP

Development process of the ICAO CO2 Standard criticized:

- **Simos**: Observing the ICAO process from its periphery over an extended period exposes the committee dynamics that cause eminent groups of thinking, educated and capable professionals to act together to produce the worst possible result. ICAO is a loose organization of participants with conflicting interests. Everyone is wary of everyone else, and environmental groups, manufacturers and airline groups all seem to be entrenched in narrow positions. A March 2012 slide presentation by one particular airframe manufacturer brandished these extraordinary bullet points:
 - "Our ultimate Goal is to **design** the CO2 standard so that it does not interfere with the market"
 - **"Exclude all** commercially important parameters from the metric system of the standard
 - to eliminate its **potential** to interfere with the market"
 - "Parameters to be **Excluded**: Payload, Range ... etc."
 - "In case they need to be included, Neutralize it!!"

(all bold emphases and exclamations are per the original.)

(https://perma.cc/2Z89-YK7Z)

Parameters to be Excluded: Payload Agreement on 1/SAR, not on Mission Fuel/Distance (MF/D), Range has eliminated these parameters from the standard. Speed Number of seats Floor area (payload proxy) • However, political environment in ICAO CO2 Task Group requires etc. this parameter to be included in the standard.

ICAO aircraft CO2 standard: How should we design it?

ICAO aircraft CO2 standard: How should we design it?

In case they need to be included,

"Neutralize it !!"

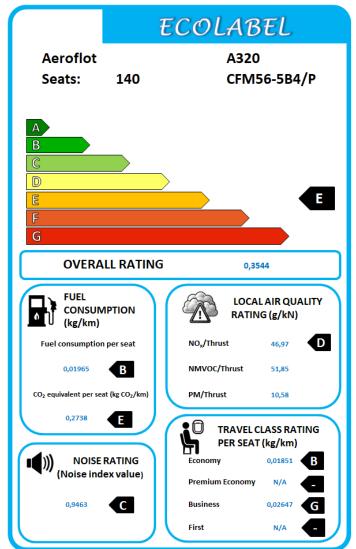
Perspectives of one manufacturer participating in the ICAO process

(https://perma.cc/2Z89-YK7Z)

Idea / Goal & the "Ecolabel for Aircraft"

- The travelling public should make an informed choice when selecting a flight
 - o Price
 - ticket price (basic fare, baggage, seat selection, ..., payment fees)
 - o **Time**
 - useful time & wasted time
 - o **Comfort**
 - travel class (=> seat pitch, seat width, ...)
 - number of transfers
 - Environmental footprint => Ecolabel for Aircraft

(simplified Life Cycle Assessment, LCA)


- Resource depletion (fuel burn)
- Global warming (fuel burn)
- Local air quality (NOx)
 - + **Ozone** formation potential (NMVOC: NOx, SO2, CO, HC)
 - + **Particulate matter** formation (PM: NOx, PM)
- Noise

The Ecolabel for Aircraft

- Information: airline, aircraft, number of seats, engine
- Overall Rating (average rating on <u>airline</u> level)
 - Metric <u>scaled</u> between 0 and 1 (90% of aircraft)
 - o category: A to G
- Fuel consumption (from manufacturer's payload & range diagram)
 - resource depletion:
 - fuel per seat-km (kg/km) & A to G
 - global warming (depending on altitude):
 CO2-equivalent per seat-km (kg/km) & A to G
- Local air quality (ICAO LTO cycle)
 - NOx (g/kN) & A to G
 - NMVOC (g/kN) for information only
 - PM-equivalent (g/kN) for information only
- Noise (from NoisedB database; ICAO & DGAC)
- Rating according to passenger travel class

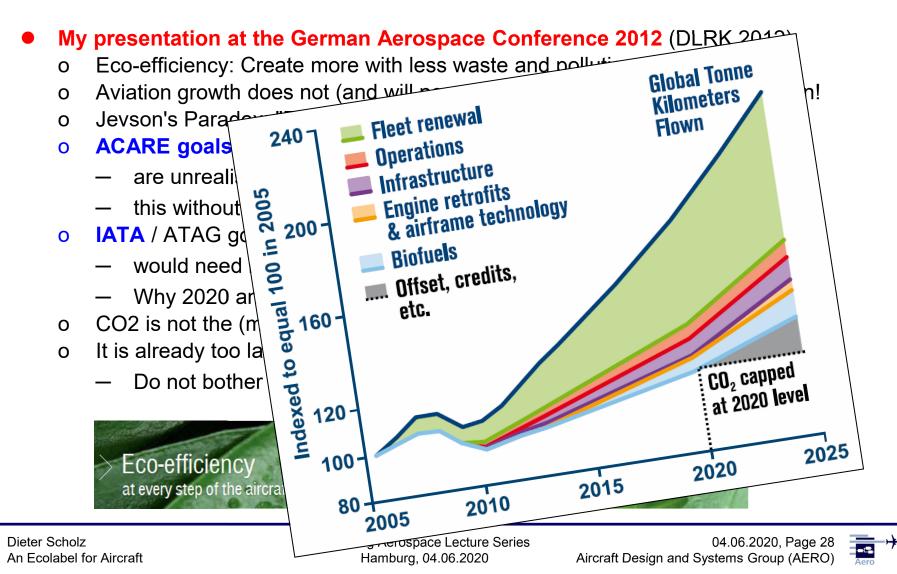
• My presentation at the German Aerospace Conference 2012*:

- o Eco-efficiency: Create more with less waste and pollution.
- o Aviation growth does not (and will never) be met by aviation's efficiency gain!
- o Jevson's Paradox: "Fuel Can Not Be Saved from Efficiency Increase!"
- o ACARE goals (fuel burn reduction, NOx, ...)
 - are unrealistic and will not be met
 - this without any consequences (today: see "Vision 2020")
- o IATA / ATAG goal: "carbon-neutral growth from 2020"
 - would need massive & effective compensation scheme. CORSIA?
 - Why 2020 and not today?
- o CO2 is not the (major) problem. The major problem is water!
- o It is already too late to safe the world. We need resilience!
 - Do not bother about aviation, rather increase height of the dikes (Hamburg)

http://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030/Airport2030_PRE_DLRK_2012_EcoEfficiencyOffCourse_2012-09-10.pdf

My presentation at the German Aerospace Conference 2012 (DLRK 2012): Eco-efficiency: Create more with less waste and pollution. 0 معط (Aviation growth does not (and will never) hcy gain! 0 Jevson's Paradox: "Fuel Con 0 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences ACARE g 0 are un this wit AERO – AIRCRAFT DESIGN AND SYSTEMS GROUP IATA / ATA 0 resilience Eco-Efficiency in Aviation would ne Flying Off Course? Why 202 CO2 is not th 0 Hamburg University of Applied Sciences It is already to 0 Dieter Scholz Do not bot burg) Deutscher Luft- und Raumfahrtkongress 2012 Eco-efficienc German Aerospace Congress 2012 at every step of the Berlin, Germany, 10.-12.09.2012

Dieter Scholz An Ecolabel for Aircraft Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 26 Aircraft Design and Systems Group (AERO)


• My presentation at the German Aerospace Conference 2012 (DLRK 2012):

- o Eco-efficiency: Create more with less waste and pollution.
- o Aviation growth does not (and will never) be met by aviation's efficiency gain!
- o Jevson's Paradox: "Fuel Can Not Be Saved from Efficiency Increase!"
- o ACARE goals (fuel burn reduction, NOx, ...)
 - are unrealistic and will not be met
 - this without any consequences (today: see "Vision 2020")
- o IATA / ATAG goal: "carbon-neutral growth from 2020"
 - would need massive & effective compensation scheme. CORSIA?
 - Why 2020 and not today?
- o CO2 is not the (major) problem. The major problem is water!
- o It is already too late to safe the world. We need resilience!
 - Do not bother about aviation, rather increase height of the dikes (Hamburg)

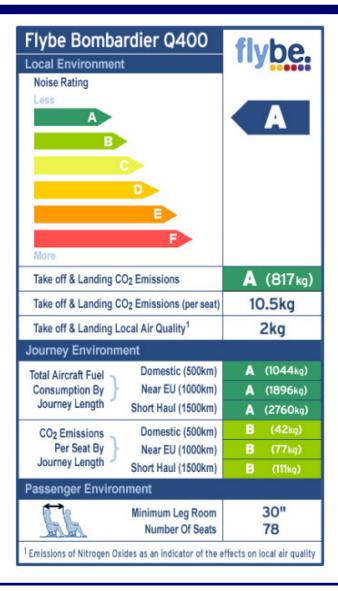
• My presentation at the German Aerospace Conference 2012 (DLRK 2012):

- o Eco-efficiency: Create more with less waste and pollution.
- o Aviation growth does not (and will never) be met by aviation's efficiency gain!
- o Jevson's Paradox: "Fuel Can Not Be Saved from Efficiency Increase!"
- o ACARE goals (fuel burn reduction, NOx, ...)
 - are unrealistic and will not be met
 - this without any consequences (today: see "Vision 2020")
- o IATA / ATAG goal: "carbon-neutral growth from 2020"
 - would need massive & effective compensation scheme. CORSIA?
 - Why 2020 and not today?
- o CO2 is not the (major) problem. The major problem is water!
- o It is already too late to safe the world. We need resilience!
 - Do not bother about aviation, rather increase height of the dikes (Hamburg)

Priorities

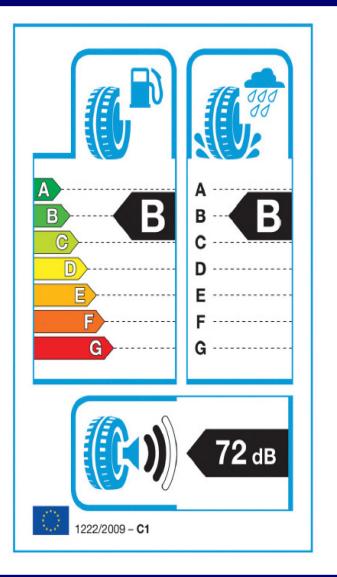
Let's get priorities right to protect the environment:

- **1.** Avoid to travel (do something else instead)
- 2. For each trip select the **best mode of transportation** (aircraft, train, bus?)
- 3. Select the shortest route
- 4. Select the **best aircraft-airline-combination** (based on the Ecolable for Aircraft)
- 5. Select an economy seat and hope the aircraft is full.
- 6. Compensate (... or maybe just do not compensate, if you do not like the idea)



Review

- Flybe's Ecolable (2007):
 - o Label not used anymore by Flybe
 - o Never used by other airlines (as intended)
 - o Detail design shows many deficiencies.



Review

- Labeling of Tires (2009):
 - o "Regulation (EC) No 1222/2009on the labeling of tires" *
 - o An example to learn from

* http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R1222

Hamburg Aerospace Lecture Series Hamburg, 04.06.2020

Review

- Other schemes
 - 1. ICAO Emission Calculator

http://www.icao.int/env

- 2. Atmosfair Emission Calculator
- 3. Atmosfair Airline Index

http://www.atmosfair.de

Standards

ISO 14020 Series: Environmental labels and declarations

 ISO 14020:2000 Environmental labels and declarations – General principles
 ISO 14021:2016 Environmental labels and declarations – Self-declared environmental claims (Type II environmental labeling)
 ISO 14024:1999 Environmental labels and declarations – Type I environmental labeling -- Principles and procedures
 ISO 14025:2006 Environmental labels and declarations – Type III environmental labels and declarations – Self-declared environmental labels and declarations – Development of product category rules

- Type II Used for the **traveling public** => **Ecolabel for Aircraft**
- Type III Used for the **experts**
- => Full Report for Experts

http://www.iso.org

Standards

- ISO 14025 (Type III) for Experts => Full Report
 - o The label has to be voluntary
 - o The label has to be life cycle based
 - o The label has to be verifiable
 - o The label has to be open for interested parties
 - o The label has to be transparent
 - o The label has to be flexible
 - o The label allows comparing different offers
 - o The label can be calculated by anyone
- ISO 14021 (Type II) for the Travelling Public => Ecolabel derived from Report

Standards

• ICAO-Regulations

ICAO Annex 16 - Volume 1: Environmental Protection – Aircraft Noise

http://cockpitdata.com/Software/ICAO Annex 16 Volume 1

ICAO Annex 16 - Volume 2: Aircraft Engine Emissions – Aircraft Engine Emissions

http://cockpitdata.com/Software/ICAO Annex 16 Volume 2

ICAO Annex 16 - Volume 3: Aircraft Engine Emissions – CO2 Certification Requirement

http://www.fzt.haw-hamburg.de/pers/Scholz/materialFM1/ICAO-2017_Annex16_Volume3_CO2CertificationRequirement.pdf

Annex 16 to the Convention on International Civil Aviation

Environmental Protection

Volume I Aircraft Noise

This edition incorporates all amendments adopted by the Council prior to 4 March 2014 and supersedes, on 1 January 2015, all previous editions of Annex 16, Volume L

For information regarding the applicability of the Standards and Recommended Practices, see Foreword.

Seventh Edition July 2014

International Civil Aviation Organization

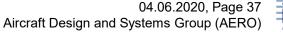
Life Cycle Assessment (LCA)

Johanning (2017): Life Cycle Assessment in Aircraft Design

ISO 14040:2006 Environmental Management -- Life Cycle Assessment

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

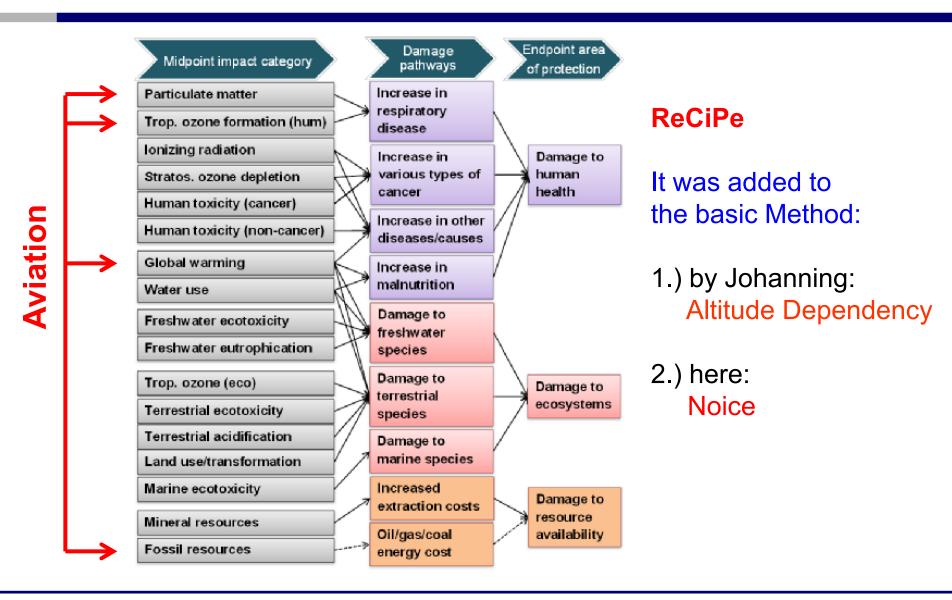
http://www.lcia-recipe.net


ReCiPe

ReCiPe is a method for the impact assessment in a Life Cycle Assessment LCA. LCA translates emissions and resource extractions into a limited number of environmental impact scores by means of so-called characterization factors. There are two ways to derive characterization factors, i.e. at midpoint level and at endpoint level. ReCiPe calculates:

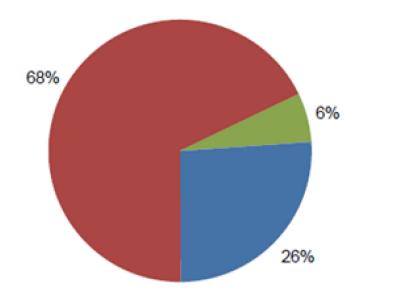
- 18 Midpoint Indicators
- 3 Endpoint Indicators
- 1 Single Score

http://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030/JOHANNING_DISS_Methodik_zur_Oekobilanzierung_im_Flugzeugvorentwurf_2017.pdf

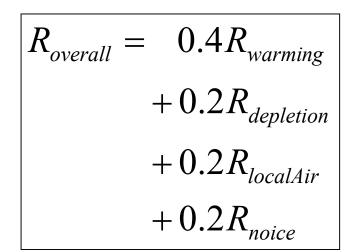

Dieter Scholz An Ecolabel for Aircraft Hamburg Aerospace Lecture Series Hamburg, 04.06.2020

NL

Dieter Scholz An Ecolabel for Aircraft Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 38 Aircraft Design and Systems Group (AERO)



Life Cycle Assessment (LCA)


ReCiPe – Result (A320):

Johanning (2017)

Ecolabel for Aircraft

Overall Rating:

- Decrease of resource depletion
- Climate Change
- Formation of Particular Matter

Table 1: Summary of candidate metrics

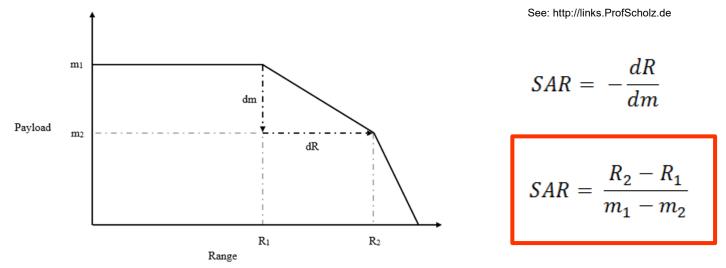
			ull Mission Metric		
Single parameter			Block Fue Range	-	
metric			Kange		1
Two- parameter	Block Fuel	Block Fuel	Block Fuel	Block Fuel	Block Fuel
metric	Payload * Range	Useful Load * R	MTOW * Range	Floor Area * R	Av. Seats * R
Three-	Block Fuel	Block Fuel	Block Fuel	Block Fuel	Block Fuel
parameter	Payload * R.*Speed	Useful Load * R.*Speed	MTOW * R. *Speed	Floor Area*R.*Speed	Av. Seats * R. *Speed
metric	Block Fuel	Block Fuel	Block Fuel	Block Fuel	Block Fuel
	Payload * R./Time	Useful Load*R./Time	MTOW * R./Time	Floor Area*R./Time	Av. Seats * R./Time
		Instantar	eous Performanc	e Metrics	
Single			1	1	
parameter metric			Specific Air Range	SAR	
Two-parameter	1	1	1	1	1
metric	SAR * Payload	SAR * Useful Load	SAR * MTOW	SAR * Floor Area	SAR * Av. Seats
Three-	1	1	1	1	1
parameter	SAR * Payload *	SAR * Useful	SAR * MTOW	SAR * Floor	SAR * Av. Seats
metric					

Selecting a Fuel Metric:

 $1/(SAR \cdot n_{seat})$

Note: R = Range

http://partner.mit.edu/projects/metrics-aviation-co2-standard



measured
$$SAR = -\frac{dR}{dm} = \frac{V_{TAS}}{C_{gross}}$$

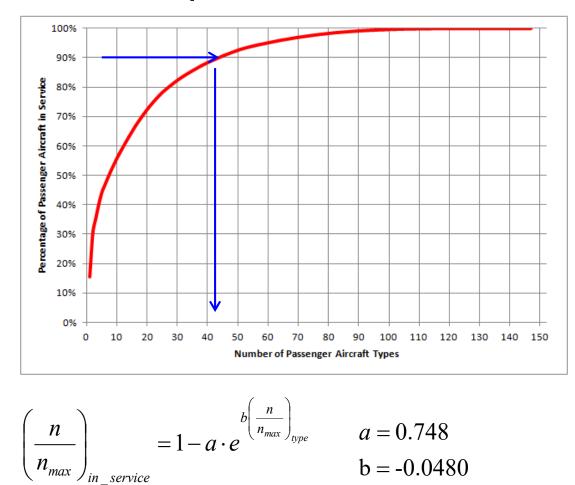
calculated $SAR = -\frac{dR}{dm} = \frac{v \cdot E}{c \cdot g}$

Here taken from:

Payload-Range-Diagram available from: "Documents for Airport Planning"

Dieter Scholz An Ecolabel for Aircraft Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 41 Aircraft Design and Systems Group (AERO)

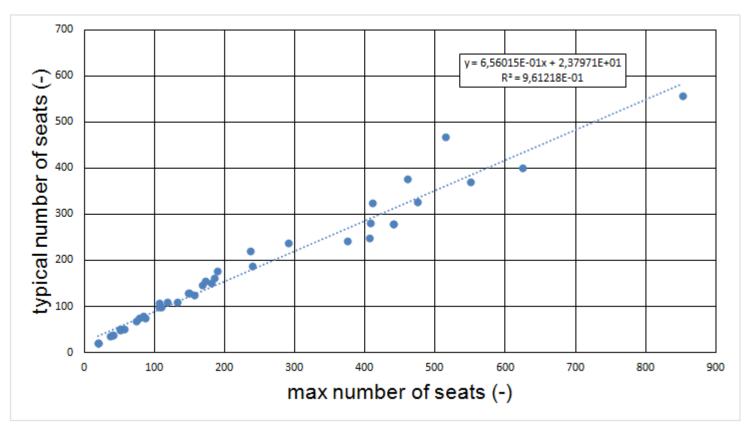
Global airliner fleet by type and operator


Airbus A300	Total 210	Turkish Airlines	3	Druk Air	3	Dart Airlines	1
Africa	Total 3	North/South America	Total 17	Etihad Airways	2	EasyJet	133
Egyptair (600)	2	Air Transat	9	Lucky Air	3	EasyJet Switzerland	11
Egyptair (B)	1	FedEx	8	Mihin Lanka	1	Ellinair	2
Asia Pacific & Middle East	Total 47	Airbus A318	Total 43	Myanmar Airways International	3	Finnair	9
Air Hong Kong (600)	10	Europe	Total 24	R Airlines	1	Germania	8
Global Charter Services (B)	4	Air France	18	Rotana Jet	1	Germania Flug	2
Iran Air (600)	3	British Airways	2	Royal Jordanian	4	Germanwings	43
Iran Air (B)	4	TAROM	4	Safi Airways	2	Hamburg International	(2)
Mahan Air (600)	14	North/South America	Total 19	Saudia	4	Helvetic Airways	1
Mahan Air (B)	1	Avianca	10	Shenzhen Airlines	5	Iberia	16
Meraj Air (600)	2	Avianca Brazil	9	Sichuan Airlines	23	Lufthansa	30
Qeshm Airlines (600)	4	Airbus A319	Total 1,327 (6)	SilkAir	4	Niki	5
Silk Road Cargo Business (600) 1	Africa	Total 34	Tibet Airlines	14	Rossiya	26
Unique Air (600)	2	Afriqiyah Airways	2	Tigerair	2	S7 Airlines	20
Liniton Airlines (600)	2	Air Côte d'Ivoire	Λ	West Air (China)	1	242	1

147 different aircraft types and26000 aircraft in database

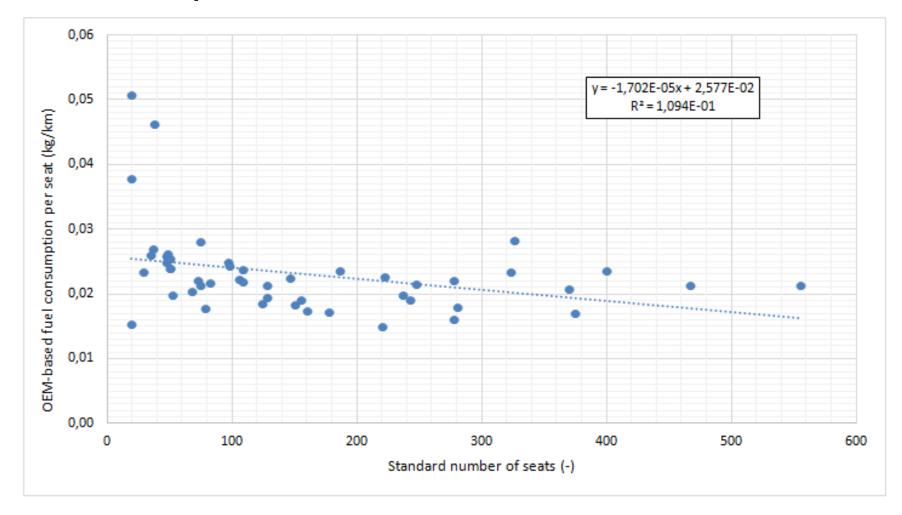
Flight International, 2016-08-04: World Airliner Census 2016. Archived at: https://perma.cc/38XC-C74T

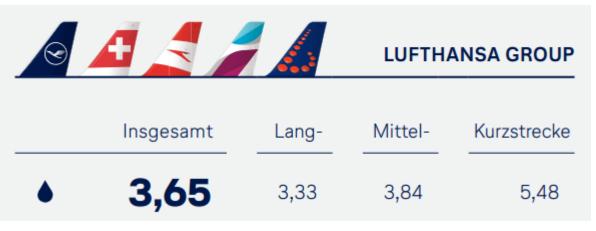
Some of the most operated 49 types where selected to describe 90% of all passenger aircraft $(n_{seat} > 14)$.

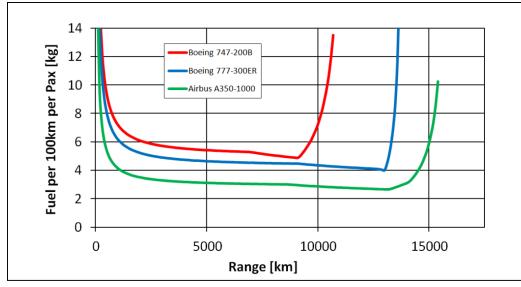

49

payload-range diagrams evaluated

Method to quickly determine cruise altitude from basic data

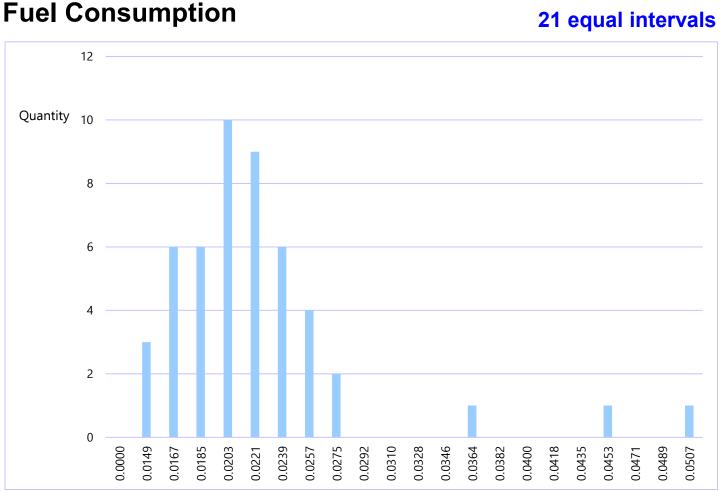






Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 45 Aircraft Design and Systems Group (AERO)

Angabe des spezifischen Treibstoffverbrauchs in Liter/100 Passagierkilometer (I/100pkm)

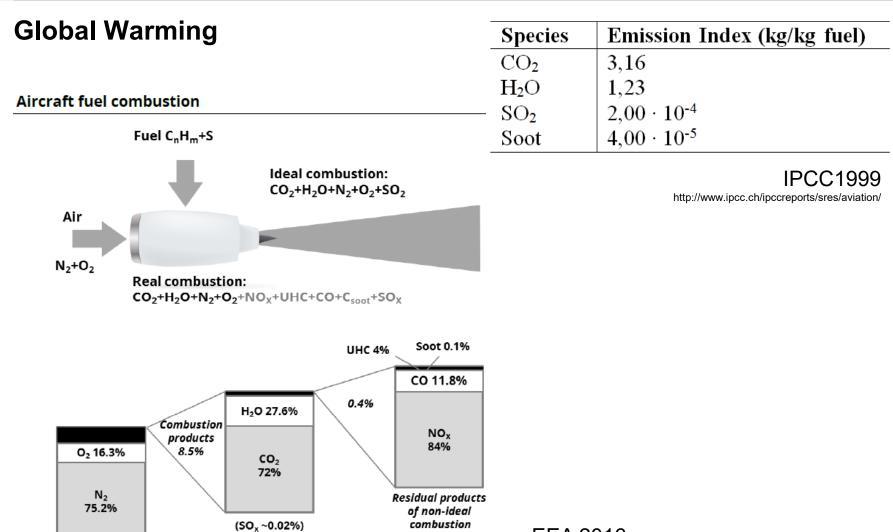

LUFTHANSA, 2019. BALANCE – Nachhaltigkeitsbericht 2019. https://perma.cc/L9N6-JHSR

BURZLAFF, Marcus, 2017. Aircraft Fuel Consumption - Estimation and Visualization. https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2017-12-13.019

Dieter Scholz An Ecolabel for Aircraft Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 46 Aircraft Design and Systems Group (AERO)

Normalized OEM-based fuel consumption per seat (kg/km)

Dieter Scholz An Ecolabel for Aircraft


Rating scale for the fuel consumption per seat (kg/km)

Rating	Ra	nge	Normalized to 0-1			
	min	max	min	max		
А	0,01493	0,01772	0	0,0781		
В	0,01772	0,01983	0,0781	0,1370		
С	0,01983	0,02131	0,1370	0,1783		
D	0,02131	0,02246	0,1783	0,2106		
Ε	0,02246	0,02392	0,2106	0,2514		
\mathbf{F}	0,02392	0,02602	0,2514	0,3099		
G	0,02602	0,05070	0,3099	1,000		

7 unequally spaced intervals for categories A to G with the same number of aircraft in each category

EEA 2016

http://www.eea.europa.eu/publications/emep-eea-guidebook-2016

Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 49 Aircraft Design and Systems Group (AERO)

Global Warming

<text><section-header><section-header><text><text><image>

European Environment Agency

European Monitoring and Evaluation Program (EMEP) http://www.emep.int

European Environment Agency http://www.eea.europa.eu/publications/emep-eea-guidebook-2016

Users will find two Excel files:

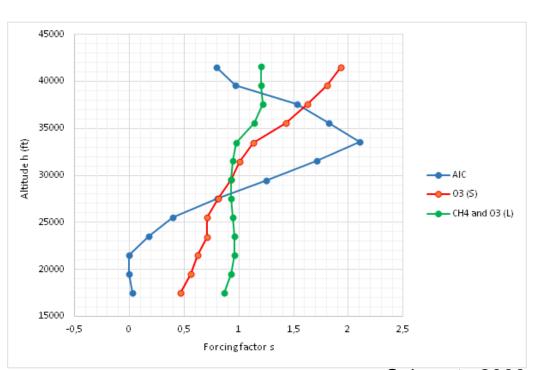
- Master emission calculator
- LTO emission calculator

Height (feet)	Fuel burnt	NO _x , UHCs and CO	CO ₂ , H ₂ O and SO _x	VOCs
> 3 000 CCD	BADA	BFFM2	Proportional to the mass of fuel	Proportional to the mass of UHCs
≤ 3 000	AEED and other da	tabases	burnt	generated

Dieter Scholz An Ecolabel for Aircraft Hamburg Aerospace Lecture Series Hamburg, 04.06.2020 04.06.2020, Page 50 Aircraft Design and Systems Group (AERO)

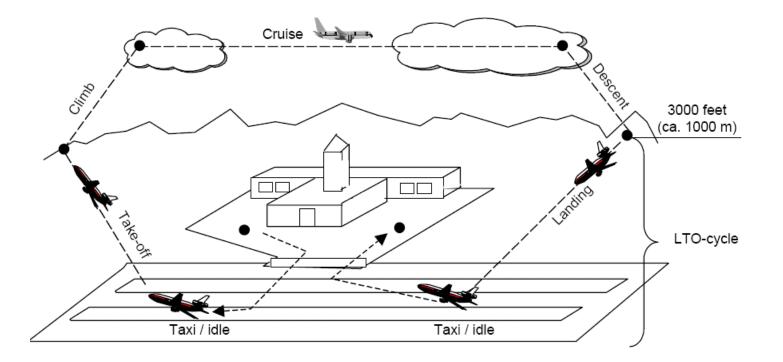

Global Warming

															u
		-	LRTAP	Aviation emissi			•						European Environ	ment Agency 素	¥
				Chapter 1.A.3.	<u>a 'Aviation' of t</u>	he 'EMEP/EEA a	ir pollutant em	ission inventor	y guidebook 201	<u>16'</u>					· · · · · · · · · · · · · · · · · · ·
		Disclaimer:	The fuel burnt and	d emission data provi	ided in this spreadsh	eet are for supporting	; the European Unio	n and EU Member St	ates in the maintena	nce and provision of	European and natio	al emission invento	ries. These data sho	uld not be used for (comparing fuel
				ween aircraft models											for each aircraft
		type in 2015. Pl	lease refer to Anne	ex 4 'EUROCONTRO	L fuel burn and emis:	sions inventory syste	m' in the aviation ch	apter of the 'EMEP'	EEA air pollutant em	ission inventory guid	ebook 2016" for a de	scription of the meth	lod used to produce	these data.	
			1												
		Aircraft co	ode -	Manufacturer		AIRBUS IN	IDUSTRIE		Engine type		Jet		Default	LTO (1) cycle (h	h:mm:ss)
		designator separate w	rs provided in vorksheet	One of the mo	odels th this aircraft	A320	1 2 2 2		The most common engine ID in 2015 used for modelling		3CM026		Phases	ICAO default	Dofault for a bury European airport, ye 2015
				type	in inis aligiari	A320	200		this aircraft t		30141026		Taxi	00:26:00	00:20:06
ELECT	\rightarrow	A32	20 -										Take off	00:00:42	00:00:42
	· ·			Category		Land	plane		Number of en	iqines 💦 👘	2		Climb out Approach	00:02:12 00:04:00	00:02:12 00:04:00
													TOTAL	00:32:54	00:27:00
								Esti	mated parameter:	s (based on year 20	015)				
			A320	Most frequently	Duration	Fuel burn (kg)	CO2	NO.	SO.	H₂O	CO	HC	PM non	PM volatile	PM TOTAL
		Aircraft type	AIRBUS INDUSTRIE	observed cruise flight level (100 ft)	(hh:mm:ss)		(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	volatile (kg)	(organic + sulphurous) (kg)	(kg) (3)
		Default LTO (1)	Default for a busy European airport, year 2015		00:27:00	742,54	2 338,99	10,97	0,62	913,32	6,52	1,30	0,0066	0,0536	0,0602
		cycle	ICAO default		00:32:54	816,17	2 570,93	11,28	0,69	1003,89	8,25	1,64	0,0067	0,0593	0,0661
NTER	→	Enter a CCD (2) stage length (NM)	300	280	00:44:21	1 907,10	6 007,38	33,60	1,60	2 345,74	5,48	1,14	0,0250	0,1912	0,2163
		TOTAL LT	O + CCD 300								13,72	2,77	0,0318	0,2505	0,2823



Global Warming

... more details ...

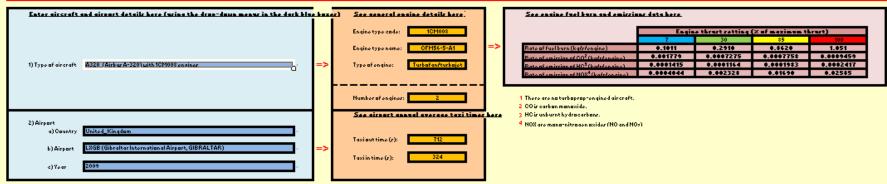

Schwartz 2009 http://www.enu.kz/repository/2009/AIAA-2009-1261.pdf

This added to **ReCiPe** to include the **Altitude Dependency**

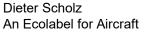
Local Air Quality

Definition of the landing and take-off cycle (LTO)

Dieter Scholz
An Ecolabel for Aircraft


Local Air Quality

Aviation LTO emissions calculator. File to accompany: Chapter 1.A.3.a 'Aviation' of the 'EMEP/EEA Air Pollutant Emission Inventory Gu



Disclaimer: The fuel burnt and emission data provided in this preadsheet are for supporting the European Union and the Member States of the European Environment Agency in the maintenance and provision of European and national emission data provided in this preadsheet are for supporting the European and national emission of the space of the support and emission data provided in this preadsheet are for support and not state of the States of the European Environment Agency in the maintenance and provision of European and national emission and emission deta provided in this preadsheet are for support and emission data for the states of the European Environment Agency in the mark towner towner type of engine (a zree in European Environment Agency in the the special dish a particular aircraft type, if it the mark towners towner type of engine (a zree in European Environment Agency in the special dish a particular aircraft type, if it the mark towners towners towners to the European Environment Agency in the towners towners type of engine (a zree in European European Environment Agency in the environment Agency in the special dish a particular aircraft type, it the mark towners towners

See LTO crole fuel burnt and emirrium tutals here

	LTO cycle tatal												
			Doparturo j	hare tatal		_	Arrival phare tatal						
		Tazi sut		Take aff	Climb aut		ppraach+landin		Texi in				
	Avorago tazi- aut timo far	ICAO defeult texi-sut time	Average tazi- aut time far					Average taxi- in time fur the		Average taxi- in time fur the			
	the relected airpart and	(-1140 <i>x</i>)	the 25 buriert airparts in					zelected airpart and	(-420 z)	25 buriert airpartr in			
		[7X Benel]		[1012 Bread]	[EST Ibreal]		[102 Becal]		[7X Bread]				
Marr of fuel burnt (kg)	143,941	231,511	165,828	##,2#4	227,56#	459,793	139,6#0	65,51#	84,524	71,171	205,19\$	664,991	Mars of fuel burnt
Marr of CO omitted (kg) —	2,533	4,855	2,584	0,079	0,205	2,\$17	0,349	1,153	1,454	1,574	1,502	4,319	Mars of CO emitted
Mars of HC omitted (kg)	0,201	8,323	1,231	0,020	0,052	0,274	0,056	0,092	8,113	1,103	0,148	0,422	Mars of HC emitted (
Mars of NOX omitted (kg)	0,576	8,922	1,551	2,171	4,462	7,209	1,117	0,262	1,341	8,512	1,3‡0	8,588	Marz of NOX emitted
Mars of CO2 omittod (kq)	453,415	725,411	\$15,857	27\$,095	716,#39	144\$,34\$	439,992	206,3#2	267,511	245,528	646,374	2094,723	Mars of CO2 omitted

Local Air Quality

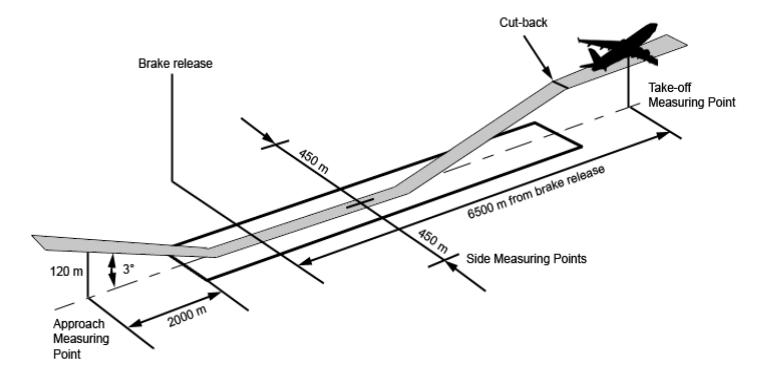
Characterization factors of ReCiPe

Midpoint category	NO _x	SO ₂	PM	CO	HC
Photochemical oxidant formation (ozone)	1	0,081	-	0,046	0,476
Particulate matter formation	0,22	0,20	1	-	-

... more details ...

Ozone :
$$NMVOC_{LTO} = 1 \cdot (NO_x)_{LTO} + 0,081 \cdot (SO_2)_{LTO} + 0,046 \cdot (CO)_{LTO} + 0,476 \cdot (HC)_{LTO}$$

PM: $(PM_{equivalents})_{LTO} = 0.22 \cdot (NO_x)_{LTO} + 0.20 \cdot (SO_2)_{LTO} + 1 \cdot (PM)_{LTO}$


(PM)_{LTO} calculated from "smoke number"

But: Only NOx enters the overall rating

Noise

Reference points for the noise measurement

Noise

Noise Certification Database

Run	Init All I	Data Hor	ne Help
Kun	init Ali I		пе неір
<u>Manufacturer</u>	All		V
Commercial name	All	V	
Туре	All	T	
<u>Version</u>	All	T	
Production aircraft	All 🔻		
Chapter/Stage	All 🔻		
Engine	All		T
<u>ID</u>	All	T	
	Operato	r X	Y
MTOM(kg)	All	▼	
<u>MLM(kg)</u>	All	▼	

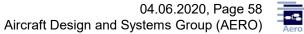
... more details ...

http://noisedb.stac.aviation-civile.gouv.fr

The Tool

General Information								
Aircraft type	A320							
Airline	Aeroflot							
Engine type	CFM56-5B4/P							
Thrust (kN)	120,1							
MTOW (kg)	75500							
Amount of Seats	140							

Travel Class Rating								
Class	Pitch (in)	Width (in)	Seats					
Economy	31	18	120					
premium economy	0	0	0					
Business	38	21	20					
First	0	0	0					
Total amount of seats			140					
S_{EC} (in ²)			558					
S _{PEC} (in ²)			0					
$S_{n,\alpha}(in^2)$			708					

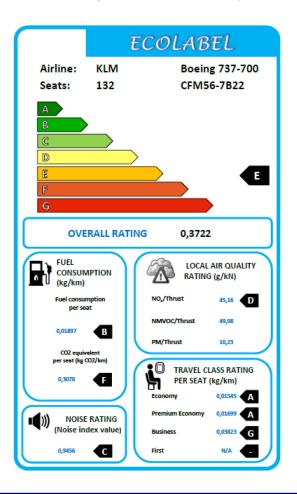

Noise Rating Jets									
	Lateral	Lateral Flyover Appro							
Noise Level (EPNdB)	93,5	84,7	95,5						
Noise Limit (EPNdB)	96,9 91,6								
Level/Limit	0,964912281	0,924672489	0,949304175						
Average	0,9463								
Normalized 0-1	0,7040								

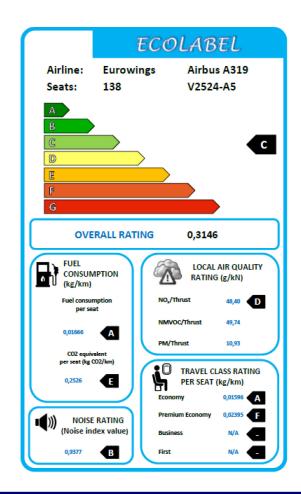
... more details ...

 mor	e d	etai	ls	
			_	

Local Air Quality Rating					
Fuel LTO cycle (kg)	408				
LTO NO _x (g)	5641				
LTO SO _x (g)	81,6				
LTO HC (g)	818				
LTO CO (g)	4123				
Smoke number T/O	5,4				
Smoke number C/O	4,1				
Smoke number App	0,2				
Smoke number Idle	0,5				
Fuel Flow T/O (kg/sec)	1,132				
Fuel Flow C/O (kg/sec)	0,935				
Fuel Flow Ann (kg/sec)	0.312				

Fuel Consumption Ra	uting
$R_1(km)$	3882
$m_1(kg)$	19750
$R_2(km)$	5200
$m_2(kg)$	16125
dr (km)	1318
dm (kg)	3625
1/SAR (kg/km)	2,750379363
Fuel consumption (kg/km/seat)	0,01965
Normalized 0-1	0,1318




Ecolabels for Aircraft – Application of the Tool

Same Aircraft Size from Different Manufacturers – Boeing 737 Family vs. Airbus A320 Family

Dieter Scholz An Ecolabel for Aircraft

Same Aircraft Size from Different Manufacturers – Boeing 737 Family vs. Airbus A320 Family

Aircraft type	Boeing 73	37-700	Airbus A3	Airbus A319		
Airline	KLM		Eurowings			
Engine type	CFM56-7B	22	V2524-A5			
Overall rating	0.3722	(E)	0.3146	(C)		
Fuel consumption						
Fuel consumption per seat	0.01897	(B)	0.01666	(A)		
CO ₂ equivalent per seat	0.3078	(F)	0.2526	(E)		
(kg CO ₂ / km)						
Local air quality						
NO _X / thrust (g / kN)	45.16	(D)	48.40	(D)		
NMVOC / thrust (g / kN)	49.08		49.74			
PM / thrust (g / kN)	10.23		10.93			
Noise rating						
Noise index value	0.9456	(C)	0.9377	(B)		
Travel class rating						
Economy (kg / km)	0.01545	(A)	0.01596	(A)		
Premium economy (kg / km)	0.01699	(B)	0.02395	(F)		
Business (kg / km)	0.03823	(G)	-			

Comparison of Boeing 737-700 vs. Airbus A319

Dieter Scholz An Ecolabel for Aircraft

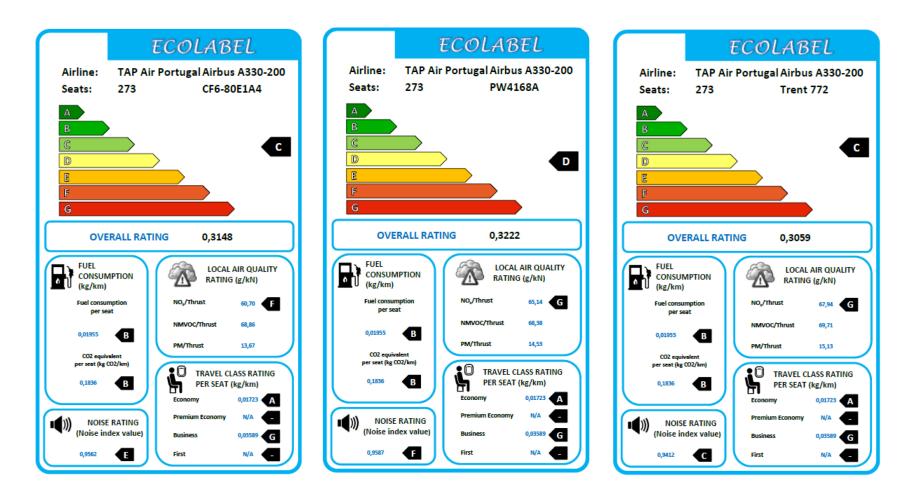
Fleet Comparison – KLM vs. Lufthansa

$$AR = \frac{\sum N_{A/C,i} S_{A/C,i} O_{A/C,i}}{\sum N_{A/C,i} S_{A/C,i}}$$

- *AR*: airline rating
- $N_{A/C}$: number of aircraft type in fleet
- $S_{A/C}$: number of seats per aircraft
- $O_{A/C}$: overall aircraft rating
- *i*: ID

Fleet Comparison – KLM vs. Lufthansa

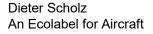
KL	∕l aircraft fleet					
ID	Aircraft type	No. of A/C	Seats per	Overall	NS	NSO
(I)		(<i>N</i>)	A/C	rating		
			(S)	(<i>O</i>)		
1	Airbus A330-200	8	268	0.3217	2144	712.88
2	Airbus A330-300	5	292	0.2810	1460	410.26
3	Boeing 737-700	18	132	0.3722	2376	835.64
4	Boeing 737-800	27	170	0.3008	4590	1381.13
5	Boeing 737-900	5	178	0.3382	890	300.99
6	Boeing 747-400	15	408	0.3198	6120	2003.69
7	Boeing 777-200ER	15	316	0.3327	4740	1471.29
8	Boeing 777-300ER	14	408	0.3042	5712	1699.32
9	Boeing 787-9	11	294	0.2160	3234	641.95
				Σ:	31266	9637.04
				Average R	ating	0.3082 (C)


Fleet Comparison – KLM vs. Lufthansa

Lufth	ansa aircraft fleet					
ID	Aircraft type	No. of A/C	Seats per	Overall	NS	NSO
(I)		(N)	A/C	rating		
			(S)	(<i>O</i>)		
1	Airbus A319	30	122	0.3601	3660	1317.97
2	Airbus A320	68	166	0.3121	11288	3522.98
3	Airbus A320neo	10	166	0.2201	1660	365.37
4	Airbus A321	63	190	0.3342	11970	4000.37
5	Airbus A330-300	19	255	0.2998	4845	1452.53
6	Airbus A340-300	17	298	0.3067	5066	1553.74
7	Airbus A340-600	20	281	0.4425	5620	2486.85
8	Airbus A350-900	8	319	0.2303	2552	587.73
9	Airbus A380-800	14	509	0.3117	7126	2221.17
10	Boeing 747-400	13	371	0.3457	4823	1667.31
11	Boeing 747-8	19	364	0.3093	6916	2139.12
	1			Σ:	65526	21315.14
				Average R	ating	0.3253 (D)

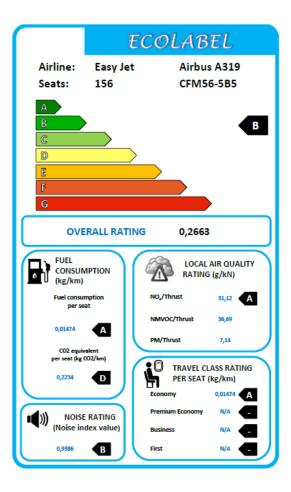
Engine Comparison on Same Aircraft – TAP Airbus A330-200

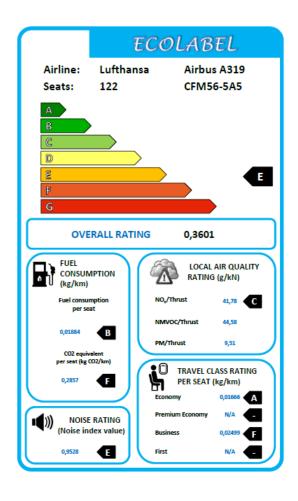
Dieter Scholz An Ecolabel for Aircraft



Engine Comparison on Same Aircraft – TAP Airbus A330-200

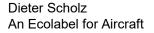
Ecolabel comparison on A330-200 TAP Portugal with three different engine types						
Engine type	CF6-80E1A4	(1)	PW4168A	(2)	Trent 772	(3)
Overall rating	0.3148	(C)	0.3222	(D)	0.3059	(C)
Fuel consumption						
Fuel consumption per seat	0.01955	(B)	0.01955	(B)	0.01955	(B)
CO ₂ equivalent per seat	0.1836	(B)	0.1836	(B)	0.1836	(B)
(kg CO ₂ / km)						
Local air quality						
NO _X / thrust (g / <u>kN</u>)	60.7	(F)	65.14 (G)		67.94 (G)	
NMVOC / thrust (g / kN)	68.86		68.38		69.71	
PM / thrust (g / <u>kN</u>)	13.67		14.53		15.13	
Noise rating						
Noise index value	0.9562	(E)	0.9587	(F)	0.9412	(C)
Travel class rating						
Economy (kg / km)	0.01723	(A)	0.01723	(A)	0.01723	(A)
Business (kg / km)	0.03589	(G)	0.03589	(G)	0.03589	(G)


Ecolabel comparison on A330-200 TAP Portugal with three different engine types



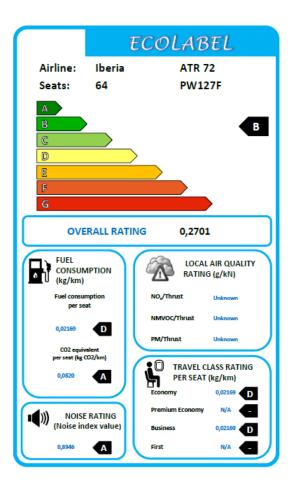
Low Cost Carrier vs. Legacy Carrier – Easy Jet vs. Lufthansa

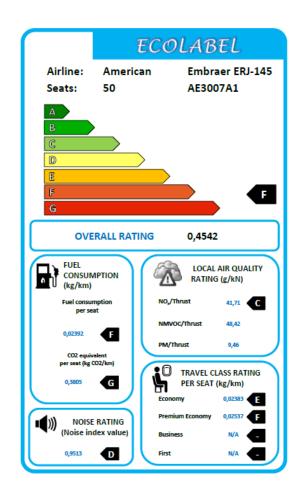
Dieter Scholz An Ecolabel for Aircraft



Low Cost Carrier vs. Legacy Carrier – Easy Jet vs. Lufthansa

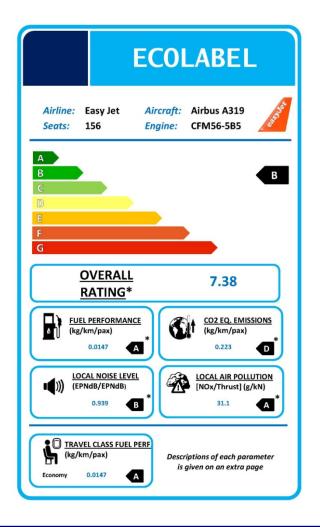
Aircraft type	Airbus A319	Airbus A319
Airline	Easy Jet	Lufthansa
Engine type	CFM56-5B5	CFM56-5A5
Overall rating	0.2663 (B)	0.3601 (E)
Fuel consumption		
Fuel consumption per seat	0.01474 (A)	0.01884 (B)
CO ₂ equivalent per seat (kg CO ₂ / km)	0.2234 (D)	0.2857 (F)
Local air quality		
NO _X / thrust (g / kN)	31.12 (a)	41.78 (c)
NMVOC / thrust (g / kN)	36.69	44.58
PM / thrust (g / kN)	7.14	9.51
Noise rating		
Noise index value	0.9386 (B)	0.9528 (E)
Travel class rating		
Economy (kg / km)	0.01474 (A)	0.01666 (A)
Business (kg / km)	-	0.02499 (F)


Low cost carrier vs. Legacy carrier - Ecolabel comparison



Turboprop vs. Turbofan – ATR 72 vs. Embraer ERJ-145

Turboprop vs. Turbofan – ATR 72 vs. Embraer ERJ-145


Aircraft type	ATR 72		Embraer E	RJ-145	
Airline	Iberia	Iberia PW127F		American AE3007A1	
Engine type	PW127F				
Overall rating	0.2701	(B)	0.4542	(F)	
Fuel consumption					
Fuel consumption per seat	0.02169	(D)	0.02392	(F)	
CO ₂ equivalent per seat (kg CO ₂ / km)	0.0820	(A)	0.3805	(G)	
Local air quality					
NO _X / thrust (g / kN)	-		41.71	(C)	
NMVOC / thrust (g / kN)	-		48.42		
PM / thrust (g / kN)	-		9.46		
Noise rating					
Noise index value	0.8946	(A)	0.9513	(D)	
Travel class rating					
Economy (kg / km)	0.02169	(D)	0.02383	(E)	
Premium economy (kg / km)	-		0.02537	(F)	
Business (kg / km)	0.02169	(D)	-		

Turboprop vs. Turbofan - Ecolabel comparison

A More Comprehensible Design of the Ecolabel?

Dieter Scholz An Ecolabel for Aircraft

Summary & What Next?

Summary

- New Motivation: Flygskam, EASA Workshop, CS-CO2 not to be used
- Ecolabel for Aircraft has been defined (ISO, ICAO, ...)
- Based on simplified Life Cycle Assessment (LCA)
 - Fuel Consumption
 - o Source of Information: Payload & Range Diagram (directly from OEM)
 - Global Warming, Local Air Quality, Noise
- Ecolabel for Aircraft has been applied:
 - Airbus A320 Family better than Boeing 737 Family
 - KLM better than Lufthansa
 - Three engines on Airbus A330-200 identical related to environment
 - Low Cost Carrier better than Legacy Carrier
 - Turboprop much better than Turbofan

What Next?

- Systematic Application
- "Governing Body" ?
- To go "massive" public ?

Ecolable for Aircraft – Definition and Application

Contact

info@ProfScholz.de

http://www.ProfScholz.de

Quote this document:

SCHOLZ, Dieter, 2020. *Ecolable for Aircraft – Definition and Application.* Hamburg Aerospace Lecture Series, HAW Hamburg, 04.06.2020. Available from: https://doi.org/10.5281/zenodo.4462457

Copyright by Author, CC BY-NC-SA, https://creativecommons.org/licenses/by-nc-sa/4.0

