

Sustainable Air Transport by Airship? Potentials of Lighter-Than-Air

10 December 2020 Hamburg Aerospace Lecture Series

Hamburg Aerospace Lecture Series Hamburger Luft- und Raumfahrtvorträge

DGLR in cooperation with the RAeS, HAW Hamburg, ZAL and VDI invites to a lecture

Sustainable Air Transport by Airship?

Dipl.-Ing. Johannes Eißing, ALTRAN Deutschland

Date: Thursday, 10 December 2020, 18:00

Online: http://purl.org/ProfScholz/zoom/2020-12-10

For a group of missions, airships can provide an answer to the goals set by Flightpath 2050 such as drastic emission reductions, safety, and cost reduction. Where slow and low flying as well as vertical take-off and landing are prerequisites, airships offer a tried and tested alternative with considerable fuel savings. The lecture is dedicated to the topic of eco-efficiency in aircraft design. Advantages of airships versus obstacles and boundary conditions in airship development are discussed.

The dawn of the airship John Murphy, CC BY-SA, https://bit.ly/37zPxUT

HAW/DGLR RAeS Prof. Dr.-Ing. Dieter Scholz Richard Sanderson

Tel.: (040) 42875-8825 Tel.: (04167) 92012

DGLR Bezirksgruppe Hamburg RAeS Hamburg Branch ZAL TechCenter VDI Hamburg, Arbeitskreis L&R info@ProfScholz.de events@raes-hamburg.de

https://hamburg.dglr.de https://www.raes-hamburg.de https://www.zal.aero https://www.vdi.de

Die *Hamburg Aerospace Lecture Series* (<u>http://www.AeroLectures.de</u>) wird gemeinsam veranstaltet von DGLR, RAeS, ZAL, VDI und HAW Hamburg (Praxis-Seminar Luftfahrt, PSL). Der Besuch der **Veranstaltung ist steuerlich absetzbar**. Bringen Sie dazu bitte eine ausgefüllte Teilnahmebestätigung zur Unterschrift zum Vortrag mit. Mittels **E-Mail-Verteilerliste** wird über aktuelle Veranstaltungen informiert. **Vortragsunterlagen** vergangener Veranstaltungen, aktuelles **Vortragsprogramm**, Eintrag in E-Mail-Verteilerliste, Vordrucke der Teilnahmebestätigung: Alle Services über das Internet: <u>http://www.AeroLectures.de</u>.

Agenda

1 Eco-Efficiency in Aircraft Design

2 Flightpath 2050

3 Where and why can Airships be superior?

4 Obstacles for Airship Development

5 Essential Boundary Conditions

6 Way Forward

Agenda

¹ Eco-Efficiency in Aircraft Design

2 Flightpath 2050

3 Where and why can Airships be superior?

4 Obstacles for Airship Development

5 Essential Boundary Conditions

6 Way Forward

1 Eco-Efficiency in Aircraft Design

Ed Hawkins, representation of temperature from 1850-2017

- Climate change
- Species extinction
- UN Sustainability Goals

IUCN, International Union for Conservation of Nature

SUSTAINABLE GOALS

1 Eco-Efficiency in Aircraft Design

CO2 Tax Carbon Allowance market

So viel CO2-Steuer zahlen einige Länder in Europa

ADDITIONAL PRICE PER FLIGHT WITH CO2 PRICING ACCORDING TO UBA IN €

CO₂ Emission Allowance July 2020: €27/tonne

Source: https://www.welt.de/wirtschaft/article191661247/

Agenda

1 Eco-Efficiency in Aircraft Design

² Flightpath 2050

3 Where and why can Airships be superior?

4 Obstacles for Airship Development

5 Essential Boundary Conditions

6 Way Forward

2 Flightpath 2050

Flightpath 2050 - Europe's Vision for Aviation Report of the EU High Level Group on Aviation Research https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf

Goals for 2050 (as compared to 2000):

Safety

- 80% reduction of the number of accidents for SAR Missions
- Manned and unmanned air vehicles to safely operate in the same airspace.

Emmissions

- 65% reduction of noise emmissions
- 75% reduction in CO2 emissions
- 90% reduction in NOx emissions

Costs

- 50% reduction in cost of certification

Commission

Flightpath 2050

Europe's Vision for Aviation

Report of the High-Level Group on Aviation Research

Agenda

1 Eco-Efficiency in Aircraft Design

2 Flightpath 2050

³Where and why can Airships be superior?

4 Obstacles for Airship Development

5 Essential Boundary Conditions

6 Way Forward

3 Where and why can airships be superior?

LTA – What is This?

Efficiency

Safety

Costs

3 Where and why can airships be superior? → LTA – What is This?

Wright Brothers December 1903 59 sec 260 m

Alberto Santos Dumont October 1901 30 min 15 km

Santos-Dumont airship No.6 attempting to claim Deutsch Prize on 19 Oct 1901

3 Where and why can airships be superior? → LTA – What is This?

June 1919 John Alcock Arthur Whitten Brown Atlantic West – East July 1919 Major George Herbert Scott 31 Crew Atlantic East – West – East + 1 Blind Passenger + 1 Cat (Whoonsie")

+ 1 Cat ("Whoopsie")

R34, Britain's titanic airship, 670 feet long and 1,250 h.p., launched at Inchinnan, near Glasgow, March 14th, 1010.

3 Where and why can airships be superior? → LTA – What is This?

LZ 101/"L 55" October 1917 Altitude 7600 m LZ 104/"L 59" "Africa Ship" November 1917 95 Hours 6757 km 50 tonnes Useful Load

(Compare 1956 Douglas C-133 Cargomaster)

3 Where and why can airships be superior? → Efficiency

				OWE/	MTOW	Max	Max		Installed		
A/C	Name	MTOW	OWE	MTOW	-OWE	Speed	Speed	Productivity	Power	ε*	η**
		[ton]	[ton]	[%]	[ton]	[m/s]	[kmh]	[ton*g*m/s]	[kW]	[-]	[-]
Fixed-Wing	Average			52%			655			0.11	4.2
A400M	A400M	141.0	76.5	54%	64.5	217	781	137229	32800	0.11	4.2
C-160 NG	Transall	51.0	27.8	54%	23.2	143	513	32447	9098	0.13	3.6
C-130J	Hercules	70.3	34.3	49%	36.0	186	671	65862	13832	0.11	4.8
Tilt-Wing	Average			64%			547			0.26	1.4
V-22 STO	Osprey	24.9	14.8	59%	10.2	157	565	15622	9180	0.24	1.7
V-22 VTO	Osprey	21.5	14.8	69%	6.7	157	566	10405	9180	0.28	1.1
AW609	AgustaWestland	7.6	4.8	63%	2.9	141	509	3959	2894	0.27	1.4
Rotor-Wing	Average			52%			266			0.48	1.0
S-64	Skycrane	19.1	8.7	46%	10.3	56	203	5710	7110	0.67	0.8
Mi-26	Halo	56.0	28.2	50%	27.8	82	295	22341	17000	0.38	1.3
NH90	NH90	10.6	6.4	60%	4.2	83	300	3432	3324	0.38	1.0
Airship	Average			44%			122			0.04	14.6
LZ-129	Hindenburg	242.0	118.0	49%	124.0	38	135	45603	3532	0.04	12.9
LZ-127	Graf Zeppelin	126.6	62.1	49%	87.0	35	128	30286	2088	0.05	14.5
L-59	"Afrika Schiff"	79.5	27.6	35%	51.9	29	103	14563	895	0.04	16.3
*ε = Specific Resistance = P/(MTOW x V) [kW/(tonne x g x m/s)]											
**η = Trans											

3 Where and why can airships be superior? → Efficiency

3 Where and why can airships be superior? → Safety

Balloon mode: "Don't use the E-Word!"

→ An "All Engines Out" is not an Emergency

Impact Energy \rightarrow If they come down, they come down slowly

Visibility, LoS, Distance → Size Does Matter

No Downwash → Safer for Pax and Groundcrew

3 Where and why can airships be superior? → Costs

- Certification Specifications
- Commuter Airplane: CS-23:
- Commuter Airship: CS-30C:
- Transport Airplane: CS-25:
- Transport Airship: CS-30T:
- Engine and DOC
- Acquisition
- Depreciation
- Maintenance
- Fuel burn

429 pages76 pages473 pages125 pages

3 Where and why can airships be superior? \rightarrow Costs

- Low Altitude
- No Oxygen Systems
- No Cabin Pressurization
- Low Speed
- Dynamic Pressure
- Inertia Loads
- Mach Effects

Agenda

1 Eco-Efficiency in Aircraft Design

2 Flightpath 2050

3 Where and why can Airships be superior?

⁴Obstacles for Airship Development

5 Essential Boundary Conditions

6 Way Forward

4 Obstacles for Airship Development

4 Obstacles for Airship Development

Prejudice

- But the Side-Wind!
 - → Airships usually dont fly sidewards
 - → As VTOL aircraft, airships dont do crosswind starts and landings
- But they are soo slow!
 - → Airships withstand wind of **70kts** on the mast (Beaufort 12)
 - → 70kts is a common top speed for airships
- But the Hindenburg exploded!
 - ightarrow "The Lifting gas must be non-flammable!"
 - \rightarrow 62 out of 97 persons on bord survived

4 Obstacles for Airship Development

Reinventing the Wheel:

Off-Eqilibrium Airships ("Air Vehicles") →

- About 50% heavier than air
- No Balloon mode
- Snow loads
- Landing loads
- Larger Fins needed (Weight and Drag)
- Need run-way, but can't handle side-wind

← Lenticular Airships →

- See above
- Unstable in pitch and yaw

← Variable Buoyancy Airships

- Burgess' Book "Airship Design":
- Chapter "Known Airship Fallacies":
- \rightarrow Heavy, complex, Fuel-hungry

Agenda

1 Eco-Efficiency in Aircraft Design

2 Flightpath 2050

3 Where and why can Airships be superior?

4 Obstacles for Airship Development

⁵Essential Boundary Conditions

6 Way Forward

5 Essential Boundary Conditions

Economical CO2 tax (Compare Oil Crises)

Ecological Emission Reduction CO2 Footprint **Political** LTA as Clean Sky Topic

 \rightarrow Clean Sky 3 Time is now!

Agenda

1 Eco-Efficiency in Aircraft Design

2 Flightpath 2050

3 Where and why can Airships be superior?

4 Obstacles for Airship Development

5 Essential Boundary Conditions

6 Way Forward

LTA UAVs

Fuel Gas

Fuel-Cell

Photovoltaics

HAPS

Utility Airship

6 Way Forward, LTA UAVs

LTA UAVs

- SORA Risk Assessment
- Permit to Fly
- Endurance

Airbus DS "ALtAIR"

Jülich Institute "FieldShip"

TVN's "TVN-Z1" Berlin Olympiastadion

6 Way Forward, Fuel Gas

Fuel Gas

- 90 Years ago: Around the World on "Fuel Gas"
- Fuel with "No Weight"
- Redefinition of Energy Density
- Bio Gas?

6 Way Forward, Fuel Cells

Fuel-Cell

- Better Energy Density Than Batteries
- What if ...

H2 was carried as a Gas? (No Weight!)

Disrupt That!

altran

Kelluu, Finland

6 Way Forward, Photovoltaics

Photovoltaics

- Large Surface Area
- Photovoltaics on Rigid Airships:
- Outer cover is secondary structure

(Imagine Solar Impulse, around the world in one go, But with proper bunks and – toilets!)

6 Way Forward, HAPS

HiSentinel80 Airship, SwRI, Aerostar

HAPS: High Altitude Pseudo Satelites

High Platform II Airship, 1970, Raven

Ecosat, Altran Spain

6 Way Forward, HAPS

Thales Alenia Space' Stratobus

Lockheed Martin HALE-D

VIA 200 Airship, KARI (Bang et al. 2008)

HAPS: High Altitude Pseudo Satelites

6 Way Forward, Utility Airship

https://easn.net/research-technology-areas/10/#128

AERONAUTICAL RESEARCH & TECHNOLOGY AREAS:

Innovative Concepts and Scenarios:

Unconventional configurations and new aircraft concepts:

Lighter-than-air (LTA) vehicles/airships cargo transport, surveillance, communications, remote imaging.

6 Way Forward

Lighter-than-air (LTA) vehicles/airships – cargo transport, surveillance, communications, remote imaging:

Proposed Technology Demonstrator:

Rigid Airship Commuter Category MTOW 14.7 tonnes Length 110m

altrac

Summary

\rightarrow For Missions requiring

- Low-and-Slow
- VTOL
- Zero Downwash
- Low Noise
- \rightarrow Airships can answer Flight Path 2050 Goals for
- Reducing Emmissions drastically
- Increase Safety
- Save Costs

Questions?

3 Where and why can airships be superior? → Efficiency, Sources

A/C	Name							
Fixed-Wing	Average							
A400M	A400M	nttps://en.wikipedia.org/wiki/Airbus_A400M_Atlas_						
C-160 NG	Transall	nttps://en.wikipedia.org/wiki/Transall C-160						
C-130J	Hercules	https://en.wikipedia.org/wiki/Lockheed Martin C-130J Super Hercules						
Tilt-Wing	Average							
V-22 STO	Osprey	https://en.wikipedia.org/wiki/Bell Boeing V-22 Osprey						
V-22 VTO	Osprey	https://en.wikipedia.org/wiki/Bell Boeing V-22 Osprey						
AW609	AgustaWestland	https://en.wikipedia.org/wiki/AgustaWestland_AW609						
Rotor-Wing	Average							
S-64	Skycrane	https://en.wikiped	lia.org/wiki/Sikorsl	ky S-64 Skycrane				
Mi-26	Halo	https://en.wikipedia.org/wiki/Mil_Mi-26						
NH90	NH90	https://en.wikipedia.org/wiki/NHIndustries_NH90						
Airship	Average							
LZ-129	Hindenburg	<https: de.wikipedia.org="" lz_129="" wiki="">, <https: en.wikipedia.org="" lz_129_hindenburg="" wiki=""></https:></https:>						
LZ-127	Graf Zeppelin	"FEASIBILITY STUDY OF MODERN AIRSHIPS PHASE II, VOL. III"						
L-59	"Afrika Schiff"	"AIRSHIPS - DESIGNED FOR GREATNESS", Max Pinucc1, <https: de.wikipedia.org="" lz_104="" wiki=""></https:>						
* ϵ = Specific Resistance = P/(MTOW x V) [kW/(tonne x g x m/s)] "what price speed – revisited"								

3 Where and why can airships be superior? → Efficiency, Weight

ALtAIR Flight Test

DesX-Tail

ALtAIR

Cruciform Tail

TEAM SIZE: 1.5 START: 2016 - 2018

CONTEXT & OBJECTIVES

ALtAIR is a Lighter-Than-Air UAS by Airbus DS. To provide a low-and-slow flying platform with enhanced endurance, range, safety and acceptance compared to conventional VTOL UASs. Challenges being special flight characteristics.

CHALLENGES

- No flight Simulator available off the shelf
- Equations of Motions are more complex that for aircraft heavier-than-air
- Very few experts available

BENEFITS / RESULTS

- Delivered Physics engine for flight Simulator in Matlab/Simulink
- Proposed Flight Test Maneuvers for Parameter Identification

ALTRAN's ROLE

CUSTOMER

Airbus DS

- Provided expertise in aircraft architecture and flight physics

AIRBUS

- Worked from Altran offices, regular meetings

altra∩